Evasamara.ru

Авто журнал
12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от высокочастотных помех

Импульсные и высокочастотные помехи

Импульсные помехи

Сетевые фильтры, прежде всего, решают задачу защиты от импульсных и высокочастотных помех. Эти помехи образуются в электрической сети при включениях и выключениях электрических приборов и устройств. Таким образом, высокочастотные помехи в сети присутствуют всегда. Еще более опасны (они способны вызвать возгорание) импульсные помехи. Величина импульсных помех может достигать нескольких тысяч вольт. Длятся они доли секунды, однако этого времени достаточно, чтобы сжечь всю технику. Помехи вызывают сбои в работе и зависания компьютеров. Все данные на компьютерах, естественно, пропадают. Очень неприятно, когда результат долгой и кропотливой работы уничтожен, а причиной этого являются простые высокочастотные помехи, импульсные помехи. Но еще более неприятно, если вдруг дорогостоящий электроприбор пострадает вследствие больших перегрузок электросети, вызывающих высоковольтные импульсные помехи. Для защиты от этих помех и предназначены сетевые фильтры, фильтр импульсных помех.

Высокочастотные помехи

Сетевые фильтры, обеспечивают сохранность вашей техники. Они включают в себя фильтр высокочастотных помех, защищающий электроприборы от различных сбоев в работе. А также в них есть и фильтр импульсных помех (защита от импульсных помех): таким образом, решаются сразу две проблемы.

Классические сетевые фильтры состоят из блока защиты, содержащего варисторы, а их вторая составляющая — емкостной или индуктивно-емкостной фильтр. Конденсатор совместно с катушкой индуктивности — это фильтр высокочастотных помех. А варисторы создают самый надежный из всех существующих на сегодняшний день фильтр импульсных помех.

Варисторы (полупроводниковое сопротивление) играют роль «ножниц», которые «обрезают» высокочастотные помехи, напряжение на уровне 800-1200 вольт и тем самым сохраняют технику, подключенную в розетки фильтра. Их целью является защита от импульсных помех. Когда импульс очень мощный, варисторы могут разрушиться, но техника не пострадает. Импульсные помехи не будут представлять угрозу для ваших электроприборов, если те подключены в сеть через сетевой фильтр.

Емкостной или индуктивно-емкостной фильтр, состоящий из конденсатора (емкостной фильтр) или конденсатора и катушки индуктивности (индуктивно-емкостной фильтр) защищают от высокочастотных помех, уменьшая их вредное воздействие. Степень уменьшения зависит от величины емкости конденсатора и индуктивности катушки.

Фильтр импульсных и высокочастотных помех

Таким образом, высокочастотные помехи, импульсные помехи могут стать причиной поломки техники или даже возгорания, поэтому относительно простое и дешевое устройство защиты, фильтр высокочастотных помех, является необходимым дополнением любого электронного устройства – будь то компьютерная или офисная техника, телевизоры, проигрыватели и т. п. Чтобы была обеспечена защита от импульсных помех и высокочастотных помех — подключайте технику только через сетевые фильтры.

Сетевые фильтры разных производителей отличаются, часто достаточно серьезно. Об отличительных особенностях фильтров Vektor, лучшей защите от высокочастотных помех, читайте в статье «Преимущества наших фильтров».

По всем вопросам обращайтесь к нам по телефону, а также смотрите продукцию в каталоге.

Некоторые вопросы по выбору стабилизатора.

Сетевой фильтр условно можно разделить на две части, размещенные на одной плате: это блок ограничителей напряжения и электрический фильтр. Блок ограничителей напряжения состоит из варисторов, включенных между линиями фаза-ноль, фаза-земля, ноль-земля и электрического фильтра, состоящего из конденсаторов, либо конденсаторов и катушек индуктивности. Варисторы — это активное сопротивление, величина которого зависит от напряжения. Начиная с определенного уровня входного напряжения (пороговое значение) величина сопротивления варистора начинает уменьшаться. Она становится тем меньше, чем больше входное напряжение. Варисторы подсоединены параллельно нагрузке и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.
Электрический фильтр состоит из конденсатора (ёмкостной фильтр), или конденсаторов и катушки индуктивности (индуктивно-ёмкостной), соединенных по Т или П-образной схеме. Параметры электрического фильтра подбираются так, что амплитуда выходного сигнала в определенном диапазоне частот намного меньше его амплитуды на входе. Таким образом, варисторы рассеивают энергию импульсной помехи в виде тепла, а электрический фильтр подавляет ВЧ-помеху, возникающую при переходных процессах. Взаимодействие ограничителей напряжения и электрического фильтра позволяет добиться максимального эффекта при подавлении всех видов помех.

Что является источником импульсной и ВЧ-помехи?

Источники возникновения импульсной помехи можно разделить на два класса — природные и техногенные. Природный источник — это молниевый разряд вблизи наружной проводки.
Техногенные источники намного разнообразней — это результат включения или отключения большого числа потребителей, аварии на подстанциях и т.д. Эта проблема особенно актуальна для промышленных зон и центральных районов крупных городов. По данным зарубежных исследований импульсная помеха амплитудой до 6000 В, по крайней мере раз в год, случается в каждой электрической сети. Подобные исследования в России не проводились, но можно с большой уверенностью сказать, что для среднестатистической российской электросети этот показатель будет намного выше.
Источники возникновения ВЧ-помехи те же, что и импульсной помехи. К ним можно добавить бытовые приборы: электродрели, кофемолки, электробритвы, холодильники и т.д. Полностью устранить влияние ВЧ-помехи невозможно, т.к. она передается как по проводам, так и по эфиру.

Что такое импульсная и высокочастотная помеха?

Импульсная помеха — это кратковременное (10-6 — 10-9 с) повышение амплитуды напряжения до 4-6 тысяч вольт. Блоки питания электронных устройств не рассчитаны на то, чтобы обеспечить необходимую защиту. Самыми уязвимыми элементами являются микросхемы, которые присутствуют во многих бытовых приборах ТВ, аудио-видео аппаратуре и, конечно же, компьютерах. Международная электротехническая комиссия ввела специальный стандарт для имитации импульсных помех: наносекундных (МЭК 801-4) микросекундных (МЭК 801-5).
Высокочастотная помеха (ВЧ-помеха) — неопределенный по времени и амплитуде сигнал в диапазоне 100 Гц — 30 Мгц, который искажает параметры входного напряжения (220В / 50Гц). Высокочастотная помеха негативно влияет на работу ТВ, аудио-систем, мониторов и всего оборудования. Иногда ВЧ-помеху называют «радиопомеха».

Чем отличается модифицированный синус от настоящего?

Одной из важнейших характеристик UPS и инверторов является форма напряжения на выходе (для UPS в режиме работы от батареи). В недорогих моделях выходное напряжение имеет форму специальных прямоугольных импульсов, которые часто называют модифицированным синусом. На экране осциллографа они выглядят следующим образом
Длительность и скважность импульсов подобраны так, что действующее и амплитудное значения напряжения на выходе и его частота в точности такие же, как и в сети с синусодальной формой напряжения, осциллограмма которого выглядит следующим образом
Для питания оборудования с импульсными блоками питания модифицированный синус ничем не хуже настоящего, а для питания устройст в трансформаторными блоками питания необходим UPS или инвертор с синусоидальным выходным напряжением, который обычно стоит дороже.
Для корректного измерения напряжения модифицированной синусоиды необходимо применять вольтметры измеряющие среднеквадратическое значение напряжения (RMS). Большинство недорогих любительских вольтметров и мультиметров этой возможностью не обладает. Поэтому попытки измерить напряжение на выходе UPS или инвертора такими приборами дают значение сильно отличающееся от 220 Вольт.

Читать еще:  Бумажник с защитой от сканирования rfid

Какую мощность потребляет монитор компьютера?

Мощность потребления современных мониторов CRT:
15″ 70-100Вт
17″ 90-110Вт
19″ 100-150Вт
22″ 110-180Вт
Мощность потребления современных мониторов LCD:
15″ — 25-45Вт
17″ — 35-50Вт
19″ — 40-60Вт
За последние несколько лет разработчикам удалось существенно снизить потребление мониторов CRT, например монитор с CRT 19″ производства 1998 года может потреблять до 500Вт.

Чем отличается трехфазный стабилизатор от трех однофазных?

Трехфазные стабилизаторы марки «Штиль» отличаются наличием специального блока, который при отключении одной из фаз отключает все остальные. Это сделано для предотвращения выхода из строя трехфазных нагрузок, например, электродвигателей. Трехфазные стабилизаторы СТС обеспечивают стабилизацию как фазных, так и линейных напряжений.

В паспорте стабилизатора напряжения указано, что он работает в диапазоне входных напряжений 220 В +25%. Что будет, если напряжение выйдет за эти пределы, как в верхнюю так и в нижнюю стороны?

Если Вы приобрели стабилизатор R110 — R3000, то при понижении напряжения ниже 165В выходное напряжение падает пропорционально входному, т.е. он перестает стабилизировать. Но при этом выходное напряжение будет оставаться примерно на 25% выше входного. При повышении напряжения выше 275В выходное напряжение растет, оставаясь на 15-17% ниже входного, до перегорания предохранителя. Модели от R-6000 и выше снабжены системой автоматического отключения нагрузки при выходе напряжения за пределы установленных значений (значения указаны в паспорте на каждую модель).

Нужен ли мне сетевой фильтр, если я приобрел стабилизатор напряжения?

В подавляющем большинстве случаев не нужен. Сетевой фильтр защищает Ваше оборудование от высокочастотных и импульсных помех в сети. На входе стабилизатора напряжения стоит автотрансформатор, который обладая большой индуктивностью является достаточно эффективным фильтром высокочастотных и импульсных помех. К сожалению, уровень подавления ВЧ помех стабилизатором не нормирован, но в наших планах имеется проведение исследования стабилизаторов напряжения серии R по этому параметру в одной из авторитетных независимых лабораторий.

У меня периодически отключают напряжение на короткое время. Поможет ли мне стабилизатор напряжения для питания моего оборудования?

Нет, Вам необходимо использовать источник бесперебойного пинания (UPS) для Вашего оборудования.

Источник бесперебойного питания моего компьютера (я использую BACK UPS) постоянно переключается на батареи и обратно. Опасно ли это для него и моего компьютера?

Источники бесперебойного питания типа офф-лайн или как их иногда называют Back UPS настроены на переключение на батареи при падении напряжения в сети 196-198В. В некоторых UPS имеется возможность изменить это значение. Если у Вас в сети напряжение пониженное и близко к порогу переключения UPS на батареи и немного меняется с течением времени (довольно распространенная ситуация в вечерние часы), то Ваш UPS будет часто переключаться на батареи. Для большинства UPS такой режим работы достаточно тяжел и его батареи могут разрядиться (особенно если они уже не новые и потеряли часть емкости). Во-первых, вероятность выхода из строя Вашего UPS достаточно велика и во-вторых он может неожиданно отключиться из-за разряда батареи. Рекомендуем перед UPS включить стабилизатор напряжения. Это обеспечит Вашему UPS (и Вашему компьютеру тоже) долгую и надежную работу. Второй вариант — это замена Back UPS на Line-interactive UPS, который имеет встроенный простейший стабилизатор напряжения и переключается на батареи при напряжении ниже 175В.

Для асинхронных двигателей (который используется в Вашем насосе) характерен так называемый пусковой ток, котрый в 2-3 раза превышает номинальный. Хотя наши стабилизаторы и допускают кратковременную перегрузку, но Вам необходим запас по мощности. Поэтому Вам необходимо приобрести стабилизатор не менее чем на 1200 ВА (R-1200).

Какие бывают помехи в электросети и как от них защититься?

Вероятно, каждый читатель этой статьи обратил внимание на то, что большинство электрических приборов, работающих от бытовой сети, рассчитаны на напряжение 220 В/50 Гц. Отсюда вывод – именно такие параметры обеспечивает нам поставщик электроэнергии. К сожалению, это не совсем так. Мы можем предположить, что водопроводная вода совершенно чистая, однако опыт подсказывает, что в ней присутствуют примеси, ухудшающие вкус. Такие же «примеси», в виде дополнительных частот и импульсов, поступают к потребителю электроэнергии. Это и есть помехи в электросети.

Классификация помех

Все сетевые отклонения можно классифицировать по двум признакам: происхождению шумов и виду электромагнитной аномалии.

Причиной возникновения сетевых искажений являются:

  • природные явления (гроза, ионизация воздуха сияниями и т.п.);
  • техногенные влияния (аварии на линиях, коммутация мощных устройств и т. д.);
  • электромагнитные волны природного и техногенного происхождения.

Перечисленные причины могут вызвать серию импульсных помех или волны гармонических искажений, наложенные поверх синусоидального тока.

Наличие импульсных токов в сети очень вредно сказывается на работе современных бытовых приборов, часто насыщенных электроникой. Если не применять приборы защиты, электронные устройства могут выйти из строя, не говоря уже о качестве их работы. Разумеется, чувствительное оборудование разработчики защищают внедрёнными схемами подавления помех, но нередко требуются дополнительные внешние приборы, например, бесперебойные источники питания, сетевые фильтры (рис. 1) и другие.

Рис. 1. Защитные импульсные фильтры

При радиочастотных помехах большинство бытовых приборов могут нормально работать. Но к ним чувствительны радиоприёмники, телевизоры и некоторые медицинские приборы. Впрочем, современная цифровая радиоэлектроника довольно хорошо защищена от таких искажений.

Понимание причин искажений в электрической сети помогает решать проблемы защиты оборудования, осознанно подходить к выбору оптимальных схем подавления шумов.

Источники помех

Искажать синусоиду переменного тока способны как природные явления, так и различные техногенное оборудование. В результате их действия происходят:

  • кратковременные провалы напряжения;
  • отклонения от номинальных частотных параметров;
  • изменения гармоники электричества;
  • колебания амплитуды тока;
  • ВЧ шумы;
  • импульсные всплески;
  • синфазные помехи.

Остановимся вкратце на основных источниках, вызывающих перечисленные отклонения.

Провалы напряжения.

Данное явление является следствием работы коммутационных устройств в энергосистемах. Это случается при возникновении КЗ на линиях, в результате запусков мощных электромоторов и в других случаях, связанных с изменениями мощности нагрузки. Наличие таких кратковременных помех является неизбежностью при срабатывании защитной автоматики, и они не могут быть устранены поставщиком электроэнергии.

Читать еще:  Спрей для защиты от собак

Изменения частотных характеристик.

Отклонение от заданной частоты происходит в результате значительного изменения тока нагрузки. В случае если уровень потребляемой энергии превосходит мощность генерируемых установок, происходит замедление вращения генератора, что ведёт к падению частоты. При заниженной нагрузке возрастает частота генерации.

Автоматика регулирует распределение мощностей, вплоть до отключения нагрузок, однако частотные помехи в сети всё-таки присутствуют.

Гармоники.

Источником данного вида искажений является наличие в сетях оборудования с нелинейной вольтамперной характеристикой:

  • преобразовательные и выпрямительные подстанции;
  • дуговые печи;
  • трансформаторы;
  • сварочные аппараты;
  • телевизоры;
  • циклоконвертеры и многие другие.

Причиной гармонических искажений могут быть электродвигатели, особенно если они установлены в конце длинной линии.

Отклонение напряжения

Изменения стабильности потенциала происходит в результате периодических скачков потребляемого максимального тока. Источником изменения нагрузок являются устройства, регулирующие напряжение, например, трансформаторы с РПН.

График, иллюстрирующий кратковременное перенапряжение показан на рисунке 2 (Фрагмент А – изображает импульсный всплеск).

Рис. 2. Перенапряжение в сети

ВЧ помехи.

Создаются влиянием устройств работающих, в высокочастотном диапазоне. ВЧ помехи, вызванные действием приборов, генерирующих сигналы с высоким диапазоном частот, распространяются эфирно или через линии сети.

Импульсы напряжения.

Распространённые источники: коммутационные приборы в сетях и грозовые явления.

Несимметрия трехфазной системы.

Причиной таких помех часто являются мощные однофазные нагрузки как бытовые, так и промышленные. Они вызывают сдвиги углов между фазами и амплитудные несоответствия. Путём отключения питания мощных токопотребляющих устройств можно устранить проблему.

Способы защиты

К сожалению, мы не можем управлять качеством электросети, но защитить бытовую технику вполне реально. В зависимости от того к каким искажениям чувствителен конкретный электрический прибор, выбирают соответствующий способ защиты. Снизить уровни помех помогают различные внешние устройства, встроенные электрические схемы, а также экранирование элементов конструкций и заземления.

Пример подавления помех показан на рисунке 3.

Рис. 3. График, иллюстрирующий фильтрацию тока

Эффективными являются следующие внешние устройства:

  • стабилизаторы напряжения;
  • ИПБ;
  • преобразователи частоты;
  • регулируемые трансформаторы;
  • сетевые фильтры и фильтрующие каскады (принципиальная схема простого фильтра изображена на рисунке 4).

Схема сетевого фильтра

Особую трудность вызывает подавление высокочастотных импульсных искажений в диапазоне нескольких десятков МГц. Часто для этих целей используют защиту, применяемую непосредственно к источнику помехи.

Использование стабилизаторов напряжений оправдано в случаях наличия регулярных провалов напряжений в домашней сети. При стабильно заниженном или завышенном токе лучше пользоваться трансформатором.

Высоким уровнем защиты компьютеров и другой чувствительной электроники обладают бесперебойники. На рисунке 5 показано фото источника бесперебойного питания для защиты компьютера.

Рисунок 5. ИБП

В этих устройствах реализовано несколько защитных функций, но главная из них – снабжение питанием приборов в течение нескольких минут, с последующим корректным их отключением. С целью достижения максимального уровня защиты логично отдать предпочтение бесперебойному блоку питания.

Методы измерения

Можно ли увидеть сетевые искажения?

С помощью приборов можно не только увидеть наличие помех, но и оценить их величину и определить природу появления. Существуют специальные высокоточные приборы для измерения различных отклонений в сетях. Наиболее распространённым из них является обычный осциллограф.

У прибора имеется дисплей (экран), на котором отображается осциллограмма измеряемого тока. Оперируя различными режимами осциллографа можно с высокой точностью определять характер и уровень шумов.

Пример осциллограммы показан на рисунке 6.

Рисунок 6. Осциллограмма сетевого тока

На осциллограмме видно как основной сигнал окружают паразитные токи, которые необходимо отсекать. Анализируя характер искажений можно выбрать способ их подавления. Часто бывает достаточно применить сетевой фильтр для того, чтобы избавиться от типичных помех, влияющих на работу устройств.

Удлинитель? Нет, сетевой фильтр!

Сетевые фильтры. Для многих людей, далеких от электроники, они до сих пор остались всего лишь удлинителями и «тройниками», которые нужны только для подключения нескольких электроприборов к одной розетке. Это вполне понятно, ведь эти устройства действительно очень похожи внешне. Ну а об импульсных и других видах помех и их влиянии на электронику и электрооборудование знают обычно только специалисты. Однако этот пробел в образовании часто приводит к неприятным последствиям. Некоторые люди используют удлинители вместо сетевых фильтров. Другие покупают самые дешевые приборы, глядя только на длину шнура и количество розеток и не обращая внимания на важные параметры, которые свидетельствуют об эффективности защиты. Результатом этого могут стать вышедший из строя телевизор, сгоревшая материнская плата в компьютере или ноутбуке и т. д. Поэтому сегодня мы подробно поговорим о сетевых фильтрах и о том, на что нужно обращать внимание при их выборе.

Все характеристики сетевых фильтров можно условно разделить на две группы: основные и параметры защиты. К первой относятся в основном те, которые видны глазом и очевидны. Только по ним большинство людей и выбирают себе сетевые фильтры. Ко второй группе относятся параметры, определяющие степень защиты. Они очень важны, и именно от них в большой мере зависит стоимость сетевого фильтра, а также его польза.

Основные характеристики сетевых фильтров

Начнем мы наш разговор о сетевых фильтрах с их основных характеристик.

Длина кабеля . Длина кабеля при выборе такого фильтра определяется по расстоянию от розетки до места предполагаемого подключения. Обычно она составляет от 1,8 до 5 метров.

Количество розеток . Количество розеток определяет, сколько устройств можно включить в сетевой фильтр. В подавляющем большинстве это число колеблется от 4 до 6. Однако можно найти экземпляры и с большим количеством розеток.

Выключатели . На некоторых сетевых фильтрах можно найти общий выключатель и/или индивидуальные выключатели для каждой розетки. Они могут быть полезны, когда часто приходится обесточивать подключенные устройства. В противном случае можно спокойно обойтись и без них.

Защита телефонной и ТВ-линий . В некоторых устройствах помимо защиты обычных электропотребителей реализована защита телефонной линии и антенного кабеля. В этом случае входящие кабели подключаются в специальные разъемы на сетевом фильтре, а исходящие — в другие. Это гарантирует защиту от помех в соответствующей линии, которые могут повредить, к примеру, тюнер телевизора, телефон или факс.

Все вышесказанное относится к традиционным сетевым фильтрам, которые похожи на удлинители. Однако в последнее время на рынке появились одиночные устройства. По своей форме они больше всего напоминают бывшие столь популярными в советское время тройники, но имеют всего одну розетку. Они удобны в тех случаях, когда нужно подключить какой-то один прибор, например телевизор, находящийся недалеко от розетки.

Читать еще:  Rfid защита банковских карт

Максимальные мощность и ток нагрузки . Это два связанных друг с другом параметра, определяющие максимальную суммарную мощность оборудования, которое может быть подключено к розеткам сетевого фильтра. Чаще всего максимальный ток нагрузки составляет 10 А. Это соответствует 2,2 кВт мощности. В принципе, этого более чем достаточно для любой электроники и цифровой техники. Например, блоки питания современных компьютеров обычно потребляют не более 400-500 Вт (да и то в периоды максимальной нагрузки). Однако подключать к сетевым фильтрам электрические чайники, утюги и прочие энергоемкие приборы не стоит. Надо понимать, что это все-таки не удлинитель, а специализированное устройство для защиты в первую очередь «тонкой» аппаратуры.

Немного теории

Перед тем как перейти к разбору параметров защиты сетевых фильтров, необходимо совершить небольшой экскурс в теорию. В наших, находящихся далеко не в идеальном состоянии, электрических сетях могут возникать три типа погрешностей, которые могут оказать губительное воздействие на электронику и электрооборудование: скачки напряжения, импульсные помехи и высокочастотные помехи.

Скачки напряжения — это относительно длительное повышение напряжения в сети электропитания. Всем известно, что в нашей стране стандартным считается напряжение 220 В. И именно на него и рассчитаны все электроприборы. Естественно, в реальных условиях идеальным напряжение бывает далеко не всегда. Обычно оно колеблется в пределах 210-230 В. Это не оказывает особого влияния на электрооборудование. Однако если по каким-то причинам напряжение поднимется до 250 В или даже больше, это может привести к выходу приборов из строя. В связи с этим в сетевых фильтрах используются предохранители, которые отключают электропитание при скачке напряжения. Чаще всего используются термические прерыватели, которые просто разрывают цепь при выходе напряжения за безопасный порог на определенное количество времени.

Импульсные помехи характеризуются резким повышением напряжения тока в сети. Это повышение может быть очень значительным (до 6000 В и даже больше), но носит кратковременный характер (буквально какие-то доли секунды). Проблема заключается в том, что блоки питания в современном оборудовании не предусматривают защиту от таких помех. В результате импульс «бьет» по электронике, и в первую очередь по микросхемам. Обычно это заканчивается повреждением материнских плат и видеокарт компьютеров.

Варисторы подключаются параллельно основной нагрузке (подключенной к розеткам фильтра). В обычном состоянии их сопротивление настолько велико, что ток через них практически не идет. Но при импульсной помехе сопротивление варистора резко падает. При этом ток в основном идет через него, а не через подключенную к сетевому фильтру аппаратуру. Полученную энергию варистор преобразует в тепловую. Эффективность его работы обычно и оценивают в количестве рассеиваемой тепловой энергии.

Высокочастотные помехи — нарушения в сети электропитания, связанные с искажением синусоиды тока (в идеальном случае переменный ток как раз и должен представляться синусоидой). Они возникают при подключении к сети таких устройств, как электродвигатели (в том числе бытовой и кухонной техники), сварочные аппараты и пр. Высокочастотные помехи также отрицательно сказываются на работе любого электрооборудования. Для устранения этих погрешностей в сетевых фильтрах используют так называемые LC-фильтры. Подробно описывать эти элементы мы не будем, отметим только, что они характеризуются способностью подавления шумов (измеряется в децибелах) и диапазоном этих шумов (обычно от 100 Гц до 100 МГц).

Параметры защиты

Параметры защиты играют не менее, а, может быть, даже и более важную роль, чем другие характеристики сетевых фильтров. Ведь именно от них зависит эффективность выполнения устройством своей задачи. И, как показывает практика, именно от них в значительной степени зависит стоимость сетевого фильтра.

Предохранитель . Как мы знаем, предохранитель необходим для защиты от скачков напряжения. Это самый простой элемент защиты, присутствующий в сетевом фильтре. Никаких особых требований к нему нет. Главное, чтобы он вообще был (впрочем, представить себе сетевой фильтр без предохранителя очень и очень сложно).

Максимальный ток импульсной помехи . Данный параметр определяет максимальный ток импульсной помехи, который выдерживают варисторы сетевого фильтра. Чем он выше, тем больше степень защиты. Наиболее надежные фильтры выдерживают импульсные помехи, сравнимые с ударом молнии (значения параметра 25 000-50 000 А).

Максимальная поглощаемая энергия. Данный параметр определяет максимальное количество тепловой энергии, которую рассеивают варисторы. Он является еще одним показателем надежности защиты от импульсных помех и в большой степени коррелирует с максимальным током импульсной помехи. Так, сетевые фильтры, способные защитить от токов 30 000-50 000 А, могут поглотить 2-2,5 кДж энергии. В то же время устройства, которые защищают лишь от помех с током 4500-5000 А, поглощают не более 100-150 Дж.

Степень подавления высокочастотных помех . Данный параметр относится к LC-фильтру и выражается в децибелах (дБ). У хороших сетевых фильтров этот показатель может достигать значения 50-70 дБ. В бюджетных вариантах он обычно не превышает 20 дБ.

Здесь нужно сделать одно очень важное замечание. В технических характеристиках некоторых сетевых фильтров отсутствуют некоторые описанные тут параметры. Это может свидетельствовать о том, что в устройстве просто-напросто отсутствует соответствующий элемент защиты.

Так, например, если не указана степень подавления высокочастотных помех, то, вполне вероятно, LC-фильтра в сетевом фильтре нет. Соответственно, он никак не будет защищать оборудование от высокочастотных помех. Теоретически возможна ситуация, когда в сетевом фильтре кроме обычного термопрерывателя нет сколько-нибудь значимых элементов защиты. Такое устройство, хоть и названное производителем «сетевым фильтром», на самом деле будет являться обычным удлинителем.

Подводим итоги

Итак, как мы видим, к покупке даже такой «мелочи», как сетевой фильтр, нужно подходить с умом. Не надо сразу бросаться на самый дешевый вариант, рассуждая о нежелании переплачивать за бренд. Лучше сначала сравнить технические параметры и оценить степень защиты каждого из вариантов. Ну и, конечно же, нужно сопоставлять стоимость сетевого фильтра и оборудования, которое будет к нему подключено. Если речь идет о дешевой аппаратуре, то можно обойтись бюджетной моделью. Если же нужно обезопасить дорогую Hi-Fi-технику, то лучше подобрать вариант с максимальной защитой. И это тем более верно, что в нашей стране качество электропитания далеко от идеального.

Ссылка на основную публикацию
Adblock
detector