Evasamara.ru

Авто журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы смазки подшипников

Детали машин

Смазка подшипников скольжения

Режимы смазки

Подшипник скольжения работает при наличии смазочного материала в зазоре между цапфой вала и вкладышем.
Смазыванием называют подведение смазочного материала в зону трения, смазкой – действие смазочного материала.

При неподвижном вале жидкий смазочный материал в подшипнике из зоны контакта выдавлен (рис .1, а), но на поверхностях цапфы и вкладыша сохраняется его тонкая пленка толщиной порядка 0,1 мкм. Толщины этой пленки не хватает для полного разделения поверхностей трения в момент пуска и при малой угловой скорости. Работу подшипника скольжения в этот момент характеризует режим граничной смазки .

Вращающийся вал вовлекает смазочный материал в клиновый зазор между цапфой и вкладышем (рис. 1, б), в результате чего возникает несущий масляный слой, характеризуемый большой гидродинамической подъемной силой, под действием которой вал всплывает в смазочном материале.
По мере увеличения скорости вращения толщина смазочного слоя увеличивается, но отдельные микроскопические выступы на трущихся поверхностях касаются друг друга при относительном перемещении. Работу подшипника в этот момент характеризует режим полужидкостной смазки .

Граничную и полужидкостную смазку объединяют одним понятием – несовершенная смазка .

При дальнейшем возрастании угловой скорости возникает сплошной устойчивый слой масла, полностью разделяющий поверхности трения (рис. 2). Возникает режим жидкостной смазки , при котором изнашивания и заедания не происходит.

По способу образования масляного слоя различают гидродинамические и гидростатические подшипники скольжения.

Подшипники скольжения, в которых несущий масляный слой создается при вращении цапфы вала, называются гидродинамическими .

В гидростатических подшипниках режим жидкостной смазки создается за счет подвода масла под цапфу принудительно, от специального жидкостного насоса. Создаваемое давление должно быть таким, чтобы вал всплывал в масле. В гидростатических подшипниках создание несущего масляного слоя не зависит от угловой скорости вала.

Смазочные материалы

В механизмах и агрегатах смазка служит для выполнения нескольких функций – уменьшение сил трения, охлаждение деталей и защита их от коррозии, смывание продуктов износа с поверхностей деталей, а также для демпфирования при динамических нагрузках.
Для уменьшения трения и изнашивания, охлаждения и очистки от продуктов износа, защиты от коррозии, повышения демпфирующей способности контакта подшипники скольжения смазывают материалами, обладающими вязкостью и маслянистостью.

Вязкость характеризует объемное свойство смазочного материала оказывать сопротивление относительному перемещению его слоев.
Вязкость является важнейшим свойством масел. В гидродинамических расчетах используют динамическую вязкость μ , измеряемую в Па×с. В технических характеристиках масел указывают кинематическую вязкость v в мм 2 /с, равную динамической вязкости, деленной на плотность ρ масла.
Значения вязкости приводят для температур, близких к рабочим (50˚, 100˚С и т. п.).
Вязкость существенно зависит от температуры – с повышением температуры вязкость уменьшается, с понижением температуры вязкость увеличивается.

Маслянистость характеризует способность смазочного материала образовывать на поверхности трения устойчивые тонкие пленки, предотвращающие непосредственный контакт поверхностей.

Смазочные материалы могут быть жидкими (масла), пластичными (мази), твердыми (порошки, покрытия) и газообразными (газы).

Масла являются основным смазочным материалом. Они имеют низкий коэффициент внутреннего трения, хорошо очищают и охлаждают рабочие поверхности, их легко подводить в зоны смазывания, но требуются уплотняющие устройства, препятствующие вытеканию масла.
Различают масла: нефтяные (минеральные), синтетические и жировые.

Нефтяные масла – продукты перегонки нефти – наиболее часто применяют для подшипников скольжения. К ним относятся масла индустриальные (марок И-Л-А-22, И-Г-А-46 и др.), моторные масла (М8В, М10Г2 и др.), а также другие аналогичные типы масел, получаемых из нефти.

Синтетические масла получают искусственными методами из различных материалов и веществ. Масла, получаемые в результате синтетических добавок в минеральные масла называют полусинтетическими . Синтетические масла обладают рядом существенных преимуществ перед минеральными – они стойки к разложению и потере свойств в агрессивной среде, а также изменению вязкости при изменении температуры. Однако в настоящее время технология получения синтетических масел относительно дорогая, поэтому они используются лишь в ответственных агрегатах и механизмах.

Жировые масла – растительные (касторовое и др.) и животные (костное и др.) – обладают высокими смазывающими свойствами, но дороги и дефицитны. Их применяют редко.

Воду как смазочный материал применяют для подшипников с вкладышами из дерева, резины и пластмасс. Во избежание коррозии вал выполняют с покрытием или из нержавеющей стали.

Пластичные смазочные материалы (мази) изготавливают загущением жидких масел мылами жирных кислот.
В зависимости от загустителя пластичные смазочные материалы делят на солидолы, литолы, консталины и др. Они хорошо заполняют зазоры, герметизируя узлы трения, стойки от вымывания водой. Вязкость пластичных смазочных материалов мало изменяется при изменении температуры.
Применяют мази в подшипниках, работающих при ударных нагрузках и малых скоростях.

Твердые смазочные материалы применяют в машинах, когда по условиям работы или производства невозможно применять масла и мази (автомобильные рессоры, ткацкие станки, продуктовые машины и др.). Используют их в виде порошков (графит, дисульфиды и др.), мягких металлических покрытий (олово, серебро, золото), а также твердосмазывающих покрытий (ВНИИ НП-209 и др.).

Газообразные смазочные материалы – воздух, пары углеводородов и др. – применяют в малонагруженных подшипниках при очень высоких частотах вращения – до 250 тыс. оборотов в минуту (электро- и пневмошпиндели, центрифуги, турбины и т. п.).

Подвод смазочного материала

Смазочный материал подводится в подшипник по ходу вращения цапфы вала в зону максимального зазора, где отсутствует гидродинамическое давление (см. рис. 1, б). Распределение масла по длине вкладыша осуществляется смазочными канавками, которые располагаются в ненагруженной зоне. В местах стыка вкладышей делают неглубокие карманы-холодильники 1 (рис. 3), которые охлаждают смазочный материал, распределяют его по длине цапфы и собирают продукты изнашивания.
Жидкие масла подают в подшипники самотеком или, чаще всего, с помощью смазочных устройств, а также принудительно под давлением от жидкостных насосов (обычно шестеренчатых).

Смазочные устройства по конструкции могут быть очень разнообразными. По характеру подачи смазочного материала различают устройства для периодического (рис. 4, рис. 5, рис. 7) и непрерывного (рис. 6, рис. 8) смазывания, а в зависимости от вида смазочного материала – для пластичного (рис. 7) и жидкого (рис. 8) материала.

Через пресс-масленки (рис. 4, рис. 7) смазочный материал подают к трущимся поверхностям под давлением с помощью специального шприца-нагнетателя. Такие масленки малогабаритны, позволяют упростить подвод смазочного материала к труднодоступным узлам трения.

Читать еще:  Консистентные смазки для подшипников

Колпачковые масленки (рис. 5) служат для подачи пластичного смазочного материала. Здесь мазь периодически выдавливают через канал масленки путем подвинчивания колпачка, заполненного мазью.

Фитильные масленки (рис. 6) обеспечивают непрерывность подачи масла ,фильтруя его при прохождении через фитиль. Фитильное смазывание основано на принципе сифона, осуществляемого капиллярами хлопчатобумажного фитиля. Конец фитиля, вставленный в трубку масленки, должен быть ниже дна масляного резервуара. Недостатком таких масленок является зависимость подачи масла от его уровня в масленке, а также расход масла в нерабочий период.

Подвод масла кольцом (рис. 8), свободно висящим на цапфе. Вследствие трения между цапфой и кольцом последнее вращается, захватывает из ванны масло и подает его на цапфу. Отработавшее масло самотеком стекает в ванну и вновь захватывается кольцом. Обычно такие кольца называют маслоподъемными.

Смазывание разбрызгиванием применяют в герметически закрытых механизмах (редукторах, коробках передач и т. п.), в которых подвижные и вращающиеся детали захватывают и разбрасывают масло в объеме корпуса механизма, создавая брызги и своеобразный масляный туман, оседающие на поверхностях, нуждающихся в смазке.

Наиболее совершенным является циркуляционное смазывание , когда к трущимся поверхностям непрерывно подводят свежее охлажденное и профильтрованное масло, а отработавшее масло непрерывно отводят для последующего охлаждения и очистки.

СПОСОБЫ СМАЗЫВАНИЯ ПОДШИПНИКОВ КАЧЕНИЯ ЖИДКИМ МАТЕРИАЛОМ

Выбор смазочного материала. Жидкие смазочные масла хорошо отводят теплоту от шпиндельных опор, уносят из подшипников продукты изнашива­ния, делают ненужным периодический надзор за подшипниками. При выборе вязкости масла учитывают частоту вращения шпинделя, температуру шпин­дельного узла и ее влияние на вязкость масла.

Систему смазывания жидким материалом выбирают исходя из требуемой быстроходности шпинделя (табл. 6.19) с учетом его положения (горизонталь­ное, вертикальное или наклонное), условий подвода масла, конструкции уп­лотнений.

В зависимости от способности отводить теплоту из опор качения системы смазывания делят на два типа: с отводом теплоты — системы обильного сма­зывания, без отвода теплоты — системы минимального смазывания.

Системы обильного смазывания. Обильное смазывание обеспечивается циркуляционной системой, впрыскиванием, поливом опор струей масла.

Циркуляционное смазывание осуществляется автономной системой, предназначенной только для шпиндельного узла, или системой, об­щей для него и коробки скоростей. Масло подается в шпиндельную опору (рис. 6.4, а) или в карман, из которого стекает в нее (рис. 6.4, б). Для улуч­шения циркуляции масла предусматривают отверстия в наружном кольце под­шипника, в роликах. Чтобы обеспечить надежное попадание смазочного мате­риала на рабочие поверхности подшипников, масло подводят в зону всасыва­ния, т.е. к малому диаметру дорожек качения радиально-упорных шариковых и роликовых подшипников, которым присущ насосный эффект. Если два подшипника установлены рядом, целесообразно вводить масло между ними (рис, 6.4, б). При вертикальном положении шпинделя масло подводят к само­му верхнему подшипнику. Предусматривают свободный слив масла из опоры, благодаря чему не допускают его застоя и снижают температуру опоры. В ре­зервуаре или с помощью специального холодильника масло охлаждается. С повышением частоты вращения шпинделя разница между количеством выде­ляющейся теплоты и отводимой от подшипникового узла увеличивается, а при высокой частоте вращения через подшипники невозможно прокачать нуж­ный объем масла. Например, двухрядные роликоподшипники создают боль­шое гидравлическое сопротивление, и перемешивание слишком большого объема масла приводит не к снижению, а к повышению температуры опоры.

Минимально допустимый расход жидкого смазочного масла (см 3 /мин) для смазывания шпиндельных опор можно определить по зависимости

где средний диаметр подшипников, мм;

п — частота вращения шпинделя, об/мин;

i — число рядов тел качения в подшипнике;

вязкость масла при рабочей температуре опоры, м 2 /с;

к1 — коэффициент, характеризующий тип подшипника, (для шарикоподшипников , для роликоподшипников ;

к2 коэффициент, характеризующий условия нагружения; (при легком нагружении без предварительного натяга , при тяжелом нагружении с предварительным натягом к2 2);

к3 коэффициент, характеризую­щий условия выхода масла из рабочей зоны подшипника (при свободном вы­ходе из конических, упорных и упорно-радиальных подшипников к = 2, при свободном выходе из радиальных подшипников к — 1);

к4 — коэффициент, зависящий от рабочей температуры подшипника.

Прокачивание через шпиндельную опору нескольких тысяч кубических сантиметров масла в минуту не только позволяет надежное смазывание, но и обеспечивает отвод теплоты от опоры, т.е. создает режим «охлаждающего» смазывания. Расход масла при таком смазывании зависит от типа подшипника, частоты его вращения и вязкости масла. Для конических роликоподшипников Q = (5. 10) d. Для радиально-упорных подшипников при мм Q == 500. 1500 см 3 ‘мин, при d > 120 мм Для смазывания упорно-радиальных подшипников при d = 30. 80 мм Q = 100. 1000 см 3 /мин, при d = 8O. 18O мм 5OO. 5OOO см 3 /мин, при d > 180 мм Q = 2000. 10 000 см 3 /мин.

Смазывание впрыскиванием осуществляется специальной системой. Через 3—4 отверстия в кольце подшипника или через каналы в проставочном кольце и зазор между сепаратором и внутренним кольцом подшип­ника (рис. 6.4, в) масло под давлением до 0,4 МПа попадает на его рабочие поверхности. При этом расход масла по сравнению с циркуляционной систе­мой увеличивается, а температура подшипника снижается. Масло из опоры может удаляться самотеком или с помощью насоса. Необходимый расход че­рез опору при номинальном диаметре отверстия подшипника до 50 мм, 50. 120 мм и более 120 мм должен составлять соответственно 500. 1500, 1100. 4200 и более 2500 см 3 /мин.

Системы минимального смазывания. Капельная и фитильная системы, смазывание масляным туманом обеспечивают во внутренней полости опоры необходимый минимальный объем смазочного материала, достаточный только для разделения рабочих поверхностей опоры эластогидродинамической плен­кой.

Капельная система обеспечивает подачу в подшипник неболь­шого объема масла (от 0,02 до 2 см 3 /мин).

Фитильная система также служит для подачи в шпиндельную опо­ру небольшого объема масла. Оно поступает из резервуара по фитилю. Из-за невозможности точного регулирования расхода масло может накапливаться в опоре.

Смазывание масляным туманом, образующимся с помощью маслораспылителя, приводит к выделению в опорах минимального количества теплоты. Они хорошо охлаждаются сжатым воздухом и благодаря его избы­точному давлению защищены от пыли. Однако система сложна, и проникаю­щие наружу через уплотнения частицы масла ухудшают санитарные условия у станка. Требуемый расход смазочного материала (см 3 /мин)

Читать еще:  Смазка шрус производители

где минимально допустимый расход масла при благоприятных условиях(для шарикоподшипников , для цилиндрических ролико

Масловоздушное смазывание осуществляется следующим образом. Плунжерный дозатор, установленный в точке смазывания, через оп­ределенные интервалы, времени выдает в смеситель заданный объем масла. Там оно захватывается охлажденным воздухом, имеющим давление 0,2. 0,4 МПа, и в виде капель (а не микротумана) подводится к смазываемым по­верхностям. Объем подводимого к шпиндельной опоре масла определяется расходом воздуха и не зависит от его давления и вязкости масла. В отличие от смазывания масляным туманом рассматриваемый метод позволяет повысить подачу масла к каждой точке с целью защиты опор от загрязнений и их допол­нительного охлаждения, Масловоздушное смазывание не загрязняет окружаю­щую среду микротуманом и рекомендуется для быстроходных шпиндельных узлов.

Смазка подшипников

Главные требования, которым должны удовлетворять смазки для подшипников:

  • снижение трения;
  • защита от коррозии;
  • уменьшение шума при работе;
  • распределение температуры и ее отвод;
  • уплотнение, предотвращающее попадание посторонних включений.

Так как подшипники используются в различных условиях с разными целями, не существует универсального смазочного материала, подходящего ко всем сферам применения. В каждом случае применяется материал, наиболее отвечающий конкретным условиям и требованиям.

Смазка для подшипников качения

Смазывание подшипников качения производится не содержащими воду материалами со слабой щелочностью, которая предотвращает коррозию. Чаще всего применяются минеральные масла, сгущенные натриевым или кальциевым мылом. Материалы, используемые как для роликовых, так и для шариковых подшипников, имеют жидкую или пластичную структуру.

Жидкие смазки – масла

Масла в сравнении с пластичной смазкой обладают преимуществами при работе с предельными (низкими и высокими) температурами, более стабильны, обеспечивают меньшее внутреннее трение, их можно полностью заменять, не разбирая агрегаты. Масляные ванны используются при работе с предельно высокими скоростями. Благодаря высокой текучести масла хорошо отводят тепло.

Способы смазывания подшипников маслом

Выбор методов смазывания зависит от условий работы подшипника. Это может быть;

  • масляная ванна;
  • масляный туман;
  • капельная подача;
  • струйная подача;
  • разбрызгивание;
  • циркуляционная система.

Масло может поступать:

  • из масляной ванны, в которую погружаются тела качения или разбрызгиванием другими телами, помещенными в ванну;
  • для установленных на вертикальных валах подшипников фитильными масленками;
  • капельными масленками на горизонтальных валах, если необходима дозированная подача.

При погружении подшипника в масляную ванну, уровень смазки не превышает центра роликов или шариков при оборотах до 300 в минуту, и только касаться их, если число оборотов выше. Брызгами покрываются стенки корпуса и детали передач, а масло, стекая с них, попадает в подшипник. При этом, для того, чтобы не произошло засорения, устанавливаются маслозащитные шайбы. Если попадание масла затруднено, в редукторе монтируется насос, подающий смазку в распределительное устройство.

Пополнение масляной смазки производится раз 1-2 месяца, а замена – раз в 3-6 месяцев.

Консистентная смазка

Консистентная или пластичная смазка – полутвердая механическая смесь минеральных масел с загустителем – мылом, сохраняющая форму до температуры в 30 градусов. Кроме того в массу добавляются элементы, призванные улучшит определенные свойства: антиоксиданты, ингибиторы коррозии и пр.

Сфера применения пластичной смазки зависит от ее консистенции. Консистентный показатель массы 385–355 – централизованная смазка, консистенция 205–175 –для работы с высокими температурами.

Пластические материалы малотекучи и слабо охлаждают температуру, но их можно использовать в течение длительного времени без замены, а поверхности, прилегающие к смазке, прктически не загрязняются.

По сравнению с масляной смазкой, консистентная легко закладывается в конструкцию подшипника, не вытекает, защищает механизм от окружающей среды и не пропускает абразивные вещества. Кроме того, их применение не требует сложных уплотнительных устройств.

Заполнение подшипника смазкой происходит благодаря специальным полостям, которые наполняются на половину объема при 1500 оборотов в минуту и на две трети при меньшем количестве оборотов.

Смазка для подшипников скольжения

В подшипниках скольжения смазка требуется в зоне трения цапфы вала и вкладышем. Разделяются три вида таких материалов:

  • Граничная – смазываемые поверхности соприкасаются полностью, а разделительного слоя практически не существует, сохраняется только масляная пленка, толщина которой — 0,1мкм. Характерна для пусковых периодов работы.
  • Полужидкостная – характерна при режиме разгона привода. Смазочный слой между валом и подшипником нарушается при соприкосновении их микронеровностей;
  • Жидкостная – полностью разделяет соприкасающиеся поверхности. Вкладыши подшипника и цапфы вала при такой смазке не изнашиваются. Применяется при устоявшемся уровне частоты вращения.

Смазка обыкновенных скользящих подшипников имеет густую консистенцию с крепкой пленкой, без комков, устойчива к воздействию внешних факторов (воды, окалины, пыли) и высоким температурам.

Пигментные смазки

Пигменты начали применять для работы механизмов с высокой температурой.

Одна из самых известных — синяя смазка для подшипников ВНИИНП-246 (ГОСТ 18852-73). Мягкая мазь, которую можно применять в широком температурном диапазоне (-80 — +200 градусов), используется в малонагруженных подшипниках, работающих в вакууме или с большим температурным разбегом.

С такой же температурой в малоскоростных подшипниках может применяться и ВНИИНП-235 (ТУ 38.101297-78 изм. 1-4) – мазь темно-фиолетового цвета. Однако в вакууме ее использовать нельзя.

Но «синей смазкой» сейчас часто называют и материалы, имеющие другую расцветку – так принято именовать многофункциональные материалы, применяемые практически везде. Поэтому при изготовлении синий пигмент добавляется из-за их популярности, но на качество смазки он не влияет.

Европейские производители часто используют не синий, и зеленый или красный красители.

Так, к примеру, зеленая смазка для подшипников Amalie Green Elixir цветом подчеркивает экологичность продукта. Стойкий к вымыванию водой материал, созданный на основе сульфоната кальция с присадками, обеспечивающими защиту от ржавчины и коррозии, соответствует техусловиям ASTM D4950 (NLGI GC-LB). Применяется для подшипников, работающих на низких и высоких скоростях, со значительной нагрузке в условиях повышенной влажности.

При подборе смазки следует учитывать следующие ниже условия.

Температура эксплуатации

Высокотемпературная смазка кристаллизуется при низкой температуре, а основная масса смазочных материалов при повышении температуры высыхает, поэтому при выборе следует учитывать следующие рекомендации:

  • температура +200 +1000°С требует применения пастообразных смазок, которые одновременно защищают подшипник от заклинивания и работают как противозадирное средство;
  • в диапазоне -30 +120°С желательно выбирать смазку на минеральной основе;
  • при температуре -40 -70°С лучше всего проявляют себя силиконовые смазки.
Читать еще:  Белая смазка для суппортов

Нагрузка и режим работы

Для высокоскоростных подшипников применяется синтетические материалы, а при высокой нагрузке, приводящей к выдавливанию, лучше использовать литиевую смазку. Высокую нагрузку хорошо переносят твердые, на основе молибдена или графита, смазки.

Состояние окружающей среды

Смазка подшипников должна учитывать внешние факторы: наличие кислот, пара, воды или пыли.

Обзор лучших смазок

Каждая смазка предназначена для использования в определенных режимах и условиях, но для удобства все их можно разделить на две категории:

  • общего назначения – предназначены для работы в небольшом температурном режиме малонагруженных соединений;
  • для высоконагруженных соединений – с небольшой кинематической влажностью и увеличенным содержанием антифрикционных присадок.

Среди смазок общего назначения можно выделить следующие:

ГАЗПРОМНЕФТЬ EP 2 – отличное сочетание качества и цены, высокая водостойкость, работоспособность с температурой до 130 градусов

Muc-Off Bio Grease – предназначается для малонагруженных узлов, изготовлена на биоразлагающейся основе дисульфида молибдена

Смазки, предназначенные для высоконагруженных соединений:

LIQUI MOLY LM 50 – высокотемпературная смазка для подшипников скольжения и игольчатых подшипников, сохраняет противозадирные свойства при температуре -30 — +160 градусов, стойка к вымыванию;

SKF LGWA 2 – изготавливается на основе минерального масла с литиевыми добавками, с отличными показателями влагостойкости, с пиковой рабочей температурой 220 градусов и высокими противозадирными свойствами;

Motui Tech Grease – смазка на полусинтетической основе с литиевым комплексом, придающим материалу хорошие антифрикционные свойства, с высокими антикоррозионными свойствами, позволяющими использовать материал в сложных условиях.

Отличные характеристики демонстрирует и любая смазка Моликоте для подшипников, работающих в экстремальных условиях – с высокой и низкой температурой, на больших скоростях и повышенной нагрузкой. Кроме того, эти материалы обеспечивают отличное шумопонижение.

4 вида смазок, без которых подшипники не работают

Масла

Масло для подшипников применяется в случаях, когда узлы работают при высоких температурах и скоростях. Оно обеспечивает их постоянное охлаждение путем отвода тепла в окружающую среду.

Выделяют синтетические, полусинтетические и минеральные масла.

Синтетика производится на основе полимеров и различных соединений органических кислот. Сегодня на рынке представлены полиальфаолефиновые (ПАО), полигликолевые (ПАГ) и эфирные масла. По сравнению с минеральными, они практически не подвержены изменениям вязкости при перепадах температур и не теряют своих характеристик в агрессивной среде.

Минеральные масла изготавливают на основе продуктов нефтепереработки. Для усиления их рабочих свойств в состав материалов вводят различные присадки. Наряду с синтетикой, они широко используются в подшипниках качения и скольжения.

Полусинтетика изготавливается на основе минеральных и синтетических масел.

Масла выполняют несколько важный функций:

  • Антифрикционная. Снижает силу трения при контакте скользящих или вращающихся поверхностей
  • Защитная. Образует защитную пленку, которая предохраняет от коррозии и механических повреждений
  • Барьерная. Защищает внутренние поверхности подшипника от проникновения механических частиц и агрессивных веществ
  • Терморегулирующая. Снижает вероятность перегрева путем отвода тепла наружу

Смазывание подшипников маслами можно произвести путем погружения (для низких и средних скоростей.), капельным путем (для быстроходных узлов), созданием масляного тумана (для высоких и сверхвысоких скоростей), разбрызгиванием (для редукторов и коробок передач), струйным путем (для сверхвысоких скоростей) или при помощи циркуляционной системы смазки (для высоких температур и скоростей).

Пластичные смазки

Они представляют собой мази, которые служат для снижения трения. По сравнению с маслами они лучше удерживаются на вертикальных поверхностях, не выходят из контакта с взаимодействующими поверхностями и герметизируют смазываемые узлы.

Пластичные смазки применяют, если подшипники работают при малых, средних, высоких скоростях и/или ударных нагрузках. В отличие от масел, пластичные смазки имеют более широкую область применения и подходят практических для любых условий эксплуатации узлов.

В зависимости от факторов работы подшипников выделяют:

  • Универсальные смазки
  • Высокотемпературные смазки для подшипников
  • Морозостойкие смазки
  • Смазки для высокоскоростных подшипников
  • Смазки для высоких и экстремально высоких нагрузок
  • Смазки для оборудования пищевой промышленности
  • Смазки для узлов, работающих под воздействием химически агрессивных сред
  • Шумоподавляющие смазки

Пластичные смазки на 70-90 % состоят из базового масла (минеральное, синтетическое, полусинтетическое) и загустителя 10-15 %. В качестве загустителей используются различные мыла, продукты органического и неорганического происхождения и твердые углеводороды. Именно они позволяют смазке в состоянии покоя вести себя как твердое тело, а под воздействием нагрузок – как жидкое.

Присадки и различные добавки составляют до 5 % от общей массы смазочного материала. Это могут быть противозадирные, антиокислительные, антикоррозионные компоненты и т.д. Для придания дополнительных свойств в смазку добавляют антифрикционные и герметизирующие вещества: порошки цинка, меди или свинца, графит, дисульфид молибдена и др.

Твердые смазочные материалы

В чистом виде твердые смазки применяются только в подшипниках скольжения. Они образуют тонкий сухой слой, который снижает износ и трение. Подобные материалы используются в случаях, когда масла и пластичные смазки не соответствуют условиям эксплуатации и требованиям оборудования, например в вакууме, радиации и т.д. Они широко распространены в металлургии, приборостроении и машиностроении.

В качестве твердых смазочных материалов и покрытий на их основе используют политетрафторэтилен (ПТФЭ, тефлон), графит, дисульфид молибдена (MoS2) или мягкие металлы (медь, цинк и т.д.)

Газовые смазки – это смазки, при которых поверхности трения деталей, находящиеся в относительном движении, разделены газом. Для этого применяют воздух, хладон, неон и азот, а также низковязкие газы, например, водород. Данный вид смазывания применяются в турбокомпрессорах, газовых турбинах, ультрацентрифугах, оборудовании ядерных установок, узлах трения точных приборов, работающих при очень высоких скоростей.

Существует 3 вида газовой смазки:

  • Газодинамическая
  • Газостатическая
  • Газостатодинамическая (гибридная)

Газодинамическая смазка разделяет поверхности благодаря давлению, которое возникает в слое газа из-за движения поверхностей. Она применяется в низконагруженных и высокоскоростных узлах, например подшипниках компрессоров и ротационных насосов, высокооборотных электродвигателей, ультрацентрифугах.

Газостатическая смазка разделяет поверхности, которые находятся в относительном движении или покое, благодаря газу. Он поступает в зазор между поверхностями под давлением в 0,3 МПа. Данный вид смазки применяется в узлах механических генераторов ультразвука, скоростных центрифуг, высокоскоростных шлифовальных головок.

Газостатодинамическая смазка универсальна. Она объединяет принципы работы газодинамической и газостатической смазки.

Ссылка на основную публикацию
Adblock
detector