Evasamara.ru

Авто журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Причины выхода из строя компрессора кондиционера

Блог о климатической технике Консультации по тел.: 8-495-225-37-19

Как показывает практика, замена вышедшего из строя компрессора любой холодильной машины и, в частности, бытового кондиционера, требует выполнения определенных правил. Если ими пренебречь, выполненная работа окажется напрасной, и только что установленный компрессор придется менять вслед за вышедшим из строя.

Итак, каковы основные причины поломок компрессора? Это:

  • нарушение правил монтажа кондиционера;
  • нарушение правил эксплуатации кондиционера;
  • использование некачественных материалов при монтаже и обслуживании кондиционера;
  • заводской брак.

Разберем каждый из этих случаев более подробно.

ПРИЧИНЫ ПОЛОМКИ КОМПРЕССОРА

1. Ошибки монтажа. Основная причина того, что компрессор вышел из строя в процессе монтажа, заключается в том, что систему «забыли» вакуумировать или сделали это небрежно, с использованием непредназначенного для этих целей инструмента. Вследствие воздух и вода остаются внутри системы.

В результате, в большинстве случаев, происходит пробой изоляции в обмотке двигателя компрессора.

Если же водяные пары попадают в магистраль кондиционера, работающего на R-410A или R-407C, последствия будут еще более тяжелыми. Дело в том, что с HCF фреонами используется полиэфирное масло, которое жадно впитывает влагу, при этом в значительной степени теряет свои рабочие характеристики. В нарушается смазка компрессора и его «клинит».

К выходу компрессора из строя может привести и нарушение правил прокладки фреоновых магистралей. Прежде всего, это несоблюдение уклонов, отсутствие маслоподъемных петель, слишком длинные магистрали, заломы труб и т.п. Следствием подобных вольностей также становится нарушение системы смазки компрессора.

Такие же тяжелые последствия может иметь некачественное соединение фреоновых трубопроводов. В результате образующихся утечек компрессор перегревается и выходит из строя.

Не менее опасно попадание в трубопроводы стружки, остатков припоя и флюса. Мусор, образовавшийся в результате неаккуратной обработки или пайки труб (как правило, из-за использования неподобающего инструмента и низкой квалификации монтажников), легко может вывести компрессор из строя.

2. Среди причин выхода кондиционеров из строя значительное место занимают нарушения правил эксплуатации. Прежде всего, это использование кондиционера с реверсивным циклом при низких температурах окружающего воздуха. При включении кондиционера в режиме обогрева, двигатель герметичного компрессора перегревается и выходит из строя. Это происходит из-за того, что при низких отрицательных температурах давление всасывания, а следовательно плотность и количество хладагента, поступающего в компрессор, уменьшается. В результате ухудшается охлаждение двигателя компрессора, он перегревается, возрастает риск электрического пробоя изоляции, ухудшается смазка.

Кроме того, опасность включения кондиционера на «тепло» зимой заключается в возможном повреждении клапанной системы компрессора из-за попадания в него жидкого, неиспарившегося при низкой температуре хладагента. В этом случае происходит гидроудар, который с высокой вероятностью выводит компрессор из строя.

Большая доля повреждений приходится и на вентилятор наружного блока. Крыльчатки ломаются о лед, намерзающий на теплообменнике наружного блока, электродвигатели горят в результате блокировки крыльчаток тем же льдом.

3. Использование некачественных комплектующих. Поломки по причине использования некачественных комплектующих случаются, в первую очередь, из-за низкосортных медных труб. Эти поломки неприятны тем, что найти дефект трубы порой бывает очень и очень непросто. Иногда вообще можно встретить трубы с мусором или стружкой внутри, но это — редкость. К поломке компрессора может привести и использование хладагента с повышенной влажностью. Для того, чтобы избежать подобных неприятностей, необходимо придерживаться одного простого правила: если приобретать «расходку» не на рынке, а в специализированных фирмах — проблем не будет.

4. Заводской брак при изготовлении компрессоров, к счастью, явление достаточно редкое. С этим можно столкнуться при работе с дешевым оборудованием, в процессе изготовления которого нет должного контроля качества.

Причины выхода компрессора кондиционера из строя

Мастерам по ремонту оборудования, основным рабочим агрегатом которого является компрессор, хорошо известно, что его замена требует от исполнителя строгого соответствия определенным правилам. Это правило в полной мере касается и систем кондиционирования воздуха, компрессоры которых работают в очень жестких условиях. Более того, если не соблюдать последовательность процесса замены, то новый агрегат очень быстро выйдет из строя. Но прежде, чем описывать работы по замене компрессора, следует напомнить основные причины, по которым указанный агрегат выходит из строя. Их всего четыре, но каждая из них, при стечении определенных обстоятельств, в любом случае приведет к поломке компрессора.

Брак завода-изготовителя кондиционера и несоблюдение технологий сборки оборудования

По причине брака, компрессоры выходят из строя крайне редко. Как правило, этим грешат дешевые агрегаты, установленные в бюджетных системах кондиционирования, или произведенные никому неизвестными молодыми фирмами, а также китайскими предприятиями. Что касается нарушений технологии в процессе сборки кондиционеров, то эта проблема, также касается климатического оборудования, произведенного на территории Китая. Хотя встречаются и исключения, впрочем, очень редко.

Некачественные расходные материалы, используемые при сервисном обслуживании

Специалисты в области систем кондиционирования отмечают, что одной из основных причин выхода из строя компрессора является использование некачественных медных труб. При этом, обнаружить их дефекты еще на стадии монтажа кондиционера порой бывает невозможно. Также, правда редко, но встречаются медные трубы со стружкой и мусором внутри, которые, практически сразу после ввода в эксплуатацию оборудования, «убивают» компрессор. Следующий неприятный момент, который может вывести из строя компрессорный агрегат, — это хладагент с повышенной влажностью. Однако, стоит отметить, что указанны расходные материалы, только тогда могут негативно повлиять на работу компрессора, если их приобретать на рынке или в магазинах малоизвестных компаний. Покупая медные трубы и хладагент у проверенных поставщиков, почти всегда удается избежать проблем с кондиционером.

Нарушение правил эксплуатации и обслуживания кондиционера

Нарушение рекомендуемых производителем правил эксплуатации кондиционера находится в первых рядах причин, по которым компрессоры описываемого оборудования выходят из строя. В первую очередь это касается реверсивных систем для кондиционирования воздуха, которые эксплуатируются при низких температурах воздуха. Происходит это по причине уменьшения плотности и объема хладагента, который поступает в компрессор кондиционера, работающего в режиме обогрева в холодное время года. В результате возникают такие проблемы, как перегрев компрессора, ухудшение свойств смазки двигателя компрессора и повреждение изоляции электрических кабелей. Кроме этого, в работающем зимой в режиме «тепло» кондиционере очень часто выходят из строя клапана компрессора, на которых оседает неохлажденный, жидкий хладагент, что является причиной гидроудара — процесс, в большинстве случаев повреждающий компрессор. Также, в холодное время года, при обогреве помещений реверсивными системами для кондиционирования воздуха, на крыльчатке теплообменника наружного блока намерзает лед, что приводит к поломке лопастей крыльчатки, а также к выходу из строя двигателя компрессора.

Ошибки при монтаже кондиционера

Даже опытный специалист по установке климатического оборудования может допустить ошибки при монтаже кондиционера. Что уж говорить о доморощенных мастерах, которые учились устанавливать подобное оборудование по рассказам знакомых и информации, найденной в специальной литературе. Профессиональные монтажники систем кондиционирования отмечают, что одной из причин, по которой компрессор кондиционера выходит из строя после неверного монтажа, является отсутствие в процессе установки такого важного звена, как вакуумирование. В результате, оставшиеся в системе воздух и вода негативно сказываются на работе компрессора, что ведет к его преждевременному износу и поломке — пробой изоляции в обмотке двигателя агрегата. Также, подобные проблемы возникают в случаях, когда вакуумирование проводили некачественно или с помощью инструмента, который для этих целей не предназначен. Пары воды представляют особую опасность для кондиционера, если попадают в его магистраль. Последствия будут особенно тяжелыми, если оборудование работает на фреонах R-407C или R-410A. Это связано с тем, что HCF фреоны имеют в своем составе полиэфирное масло, которое быстро впитывает влагу, что приводит к нарушению смазки компрессора. Как результат: агрегат заклинивает.

Компрессор системы кондиционирования вряд ли долго «протянет», если в процессе его монтажа не соблюдались правила прокладки фреоновых магистралей — неверный уклон и заломы труб или их слишком большая длина, а также отсутствие маслоподъемных петель. Все это приводит к тому, что нарушается система смазки компрессора, который в ее отсутствии долго работать не может. Еще одна проблема, возникающая при неправильной прокладке фреоновых труб, касается некачественных соединений, через которые происходит утечка хладагента. В результате агрегат перегревается и выходит из строя. И последний неприятный момент, непосредственно влияющий на срок службы компрессора, касается посторонних предметов в трубопроводах. По неопытности или по халатности, некоторые монтажники используют для резки труб не специально предназначенный для этих целей инструмент — труборез, а обычную ножовку по металлу, после работы с которой, в магистралях остается стружка. Также, при установке кондиционера дилетантами, в трубопроводах часто остается флюс и припой. Все указанные, и другие посторонние предметы попадают в компрессор, нанося агрегату механические повреждения. Понятно, что работать он уже не может и требует ремонта, а в ряде случаев требует замены, ибо восстановить компрессор уже невозможно.

Читать еще:  Рейтинг поршневых компрессоров по качеству

Не холодит: типичные поломки кондиционера, и что с ними делать

Не так давно я рассказал, как появились кондиционеры в автомобиле. Далеко не сразу инженеры смогли скомпоновать все компоненты системы таким образом, чтобы система была компактной, производительной и удобной в работе. Но схема, придуманная добрых 70 лет назад, пока держится. И неплохо справляется работой – если, конечно, она работает. В стационарных устройствах, вроде бытовых холодильников, и тем более промышленных, особенных проблем с ресурсом нет, система работает десятки лет без перерыва в импульсном режиме. Но в машине почему-то уже после трех-четырех лет службы начинаются сложности, падает производительность, и, как показывает практика, ремонт оказывается дорогим. Почему так происходит, и как снизить издержки?

Как это работает?

Схема работы любого кондиционера очень проста, посмотрите на картинку:

C хема может немного различаться в зависимости от того, применяется ли терморегулирующий вентиль (ТРВ) или же просто дросселирующая вставка, но отличия минимальны.

Компрессор с электромагнитной муфтой на большинстве автомобилей приводится от двигателя ремнем. На гибридах и электромобилях он может иметь привод от электродвигателя. Конструкция этого узла может быть достаточно разнообразной. Задача компрессора – сжимать газ, при этом он разогревается.

– это наш «радиатор кондиционера», который расположен перед основным радиатором двигателя. Это просто большой радиатор, но работающий под большим давлением. Разогретый и сжатый газ поступает в конденсатор, охлаждается и выходит уже в виде жидкости.

Ещё в схеме встречается фильтр-осушитель, в нем находится некоторое количество влагопоглощающего состава – например, цеолит ХН-9. Эта деталь является расходным материалом, ее требуется менять по регламенту раз в 5-6 лет. В фильтре задерживается влага, которая способствует коррозии, а заодно и механические загрязнения.

– это небольшой радиатор, в котором фреон испаряется и отбирает тепло у воздуха. Располагается он непосредственно в корпусе системы климат-контроля автомобиля.

В системах с терморегулирующим клапаном (ТРВ) последний часто выполнен отдельным элементом, но может быть конструктивно неотделим от испарителя. В корпусе ТРВ жидкий фреон проходит через миниатюрное отверстие. Проходное сечение и давление в контуре регулируются иглой. В действие она приводится от небольшого термостата, в котором в качестве рабочего тела обычно используется газ R 12, хотя привод может быть и электрическим, и механическим. Клапан регулирует поток жидкости и, следовательно, хладопроизводительность системы.

Можно поступить проще – поставить дросселирующую вставку. Это просто клапан с отверстием постоянного диаметра. Но тогда для нормальной работы системы придется циклически включать и выключать компрессор и использовать аккумулятор жидкости после испарителя. Но КПД такой системы будет немного выше, примерно на 10%. И потому именно ее используют в бытовой технике и в гибридах. В автомобилях она тоже встречается все чаще.

– это узел, который доиспаряет хладагент и препятствует попаданию в компрессор фреона в жидкой фазе. А датчик в нем регулирует хладопроизводительность системы. В него также встроены осушитель и фильтр, так что в системе с аккумулятором отдельный фильтр-осушитель обычно не используется.

Остальные компоненты системы – это трубки. Их количество обычно колеблется между шестью и дюжиной. Также в систему входят один-два датчика для определения давления у систем с ТРВ и как минимум два для систем с аккумулятором и дросселирующей вставкой.

Управляющая электроника обязательно нужна в системах с дросселирующей вставкой для эффективной работы, но фактически применяется даже на системах с ТРВ для предохранительных функций и более удобного управления системой.

Поломка первая: утечка

В большинстве случаев поломка кондиционера ассоциируется с утечкой фреона. На практике потеря рабочей жидкости – действительно самая частая неисправность системы. Причин может быть много: механические повреждения трубок, конденсатора, корпуса фильтра-осушителя или просто нарушение соединений. Даже совершенно исправная система не рассчитана на эксплуатацию без дозаправки газом более 5-7 лет. При таком количестве быстроразъемных соединений это попросту неизбежное зло.

Запаять все трубки наглухо мешают особенности конструкций автомобилей. Так, на многих моделях снятие пакета радиаторов – обязательная процедура при регламентных работах по замене ремня или цепей ГРМ, доступе к турбинам, помпам и другому навесному оборудованию спереди.

Механические повреждения от вибраций, ударов камней или попросту перетираний тоже встречаются регулярно. Объясняется это легко: большая часть системы расположена открыто в моторном отсеке и ничем не защищена от пыли и грязи, рядом работает вибрирующий мотор, машина ездит по ямам, испытывая знакопеременные ускорения. Да еще и камни летят в радиаторы с хорошей скоростью. Неудивительно, что «чистая» утечка встречается не так уж редко, и это действительно одна из основных причин отказа системы.

Диагностируются утечки достаточно хорошо. Если проблема не выявлена при визуальном осмотре, то вакуум-тест покажет наличие течи, и зачастую место утечки можно будет определить на слух. Если же нет, то заправка системы хладагентом с краской или УФ-компонентом поможет выявить проблему.

К сожалению, иногда встречаются случаи действительно медленной утечки, возникающей только при рабочей разнице температур и длящейся неделями. С такой течью уже ездить не будешь, заправлять придется слишком часто, и найти простыми способами ее может быть очень сложно. В этом случае в ход идут варианты, как при диагностике «наобум». Мастера начинают менять компоненты последовательно. Чаще всего виновниками утечек являются или конструктивно слабые места системы, что не редкость у автомобиля, либо просто утечки трубок в передней части или с конденсатора, как наиболее крупной и уязвимой детали.

Перегрев и аварийный сброс

В системе есть множество предохранительных систем. Например, датчики давления отключат компрессор при превышении рабочей температуры, а если давление все равно растет, аварийный клапан сброса в компрессоре или фильтре выбросит фреон при аварийном превышении. И это правильно: соединения всех трубопроводов рассчитаны на работу до определенного давления и дальше просто начинают пропускать газ наружу.

Причина повышения давления в контуре до аварийного обычно проста: это перегрев. Реже давление набирается компрессором до аварийного предела. Виноваты в этом могут быть как остановки вентилятора радиаторов, так и повышенная теплопередача от вентилятора системы охлаждения, неправильно выбранный газ или его объем, поломка ТРВ или дросселирующей вставки или забитый осушитель или аккумулятор. Ну и наконец, возможен перегрев самого компрессора.

Таким образом, отсутствие газа в системе может говорить не только о механическом повреждении контура, но и о проблемах в его работе, в результате которых произошел перегрев и аварийный сброс давления. И потому при каждой заправке кондиционера обязательно контролируйте чистоту всего пакета радиаторов, работоспособность всех вентиляторов во всех режимах, особенно на максимальной производительности, а также работу датчиков давления системы.

Неисправность компрессора

Даже при наличии газа в системе кондиционер может не охлаждать воздух и не развивать нужного давления. Причин не так уж много. Наиболее частая проблема – это разрушение самого компрессора.

Читать еще:  Как выбрать воздушный компрессор для дома

На большинстве машин он поршневой аксиальный, но встречаются и рядные, и роторно-поршневые конструкции. В любом случае, в механической его части встречаются такие проблемы как задиры, прихваты, разрушения шатунов и других механических узлов. Бывает, что заклинивают или текут клапаны, штуцеры и даже соединения корпуса.

Если компрессор разрушен, он поставляет в систему много мусора, часто это повреждает еще один узел.

К счастью, самой распространенной проблемой всех компрессоров является банальный отказ электромагнитной муфты, в которой порой подгорает и изнашивается простенькое «сцепление», а электромагнит сгорает. Также муфта часто выходит из строя по вине подшипника.

Наиболее простые внешние конструкции легко меняются на месте, даже без снятия компрессора с машины. Более сложные конструкции со встроенной герметичной муфтой надежнее, но для замены неисправных элементов потребуют серьезной переборки самого компрессора.

Замена опорного подшипника муфты также зачастую потребует применения пресса, и ее не получится выполнить, не снимая сам компрессор с машины. Впрочем, иногда достаточно подрегулировать зазор или удалить грязь из муфты, и узел восстанавливает работоспособность.

К поломкам чаще всего приводит или длительный перегрев и перегрузка системы при отключенных предохранительных датчиках, или недостаток или неправильно выбранный тип смазки и попадание продуктов разрушения фильтра-осушителя в поршневую группу компрессора.

Неисправности терморегулирующего вентиля и дросселирующей вставки

Об этих деталях слишком часто забывают, но, тем не менее, это одни из самых тонких узлов всей конструкции. Их задача – создать перепад давления в системе и спровоцировать испарение хладагента.

Основная проблема в том, что это очень тонкие устройства. Отверстия очень маленькие, а у ТРВ его пропускная способность еще и регулируется иглой. Мусор забивает эти отверстия и нарушает работу системы. При вакуумировании перед заправкой система может очиститься, но вероятность этого невелика. Повышенное сопротивление ТРВ и дросселирующей вставки приводит либо к полной неработоспособности системы, либо к очень низкой ее производительности. Часто компрессор просто не может прокачать фреон, и происходит скачок давления с последующей его утечкой.

Системы с ТРВ устроены несколько проще, поскольку работают в постоянном режиме и с полным испарением хладагента перед испарителем, а системы с аккумулятором и дросселирующей вставкой имеют более простую механическую часть. Но при этом требуют контроля работы компрессора с помощью электроники, благодаря чему их испаритель «затопленного типа» примерно на 10% более эффективен, чем обычный. Но есть и еще один нюанс. Аккумулятор должен препятствовать попаданию хладагента в жидкой фазе снова в насос, иначе он выйдет из строя в результате гидроудара. И при непрогретом моторе или при включении зимой появляется шанс загубить компрессор еще и таким способом.

Приводить к неработоспособности системы могут и сбои в работе электронной системы регулирования.

Неисправности системы управления

Собственно, электроника и электрика машины не так уж редко являются причиной неработоспособности системы. Список возможных неисправностей довольно большой, но все сводится к нескольким критичным: неисправность системы подачи питания на муфту кондиционера, неисправность системы регулирования работы электровентиляторов радиаторов и, наконец, некорректная работа системы датчиков-предохранителей.

Как определить самостоятельно, что не работает

Если при включении вы не слышите характерного звука и нет изменения оборотов двигателя, то проверьте наличие фреона. Можно «неправильным» способом, просто нажав на клапан заправочной горловины, хотя этот метод не даёт возможность оценить количество фреона. Зато он работает и при отключенном компрессоре. Если «пшик» есть, то вы потратили немного фреона, но убедились, что контур под давлением. Количество фреона можно оценить либо по рабочему давлению, либо при работающем компрессоре через «глазок». Если давления нет совсем, то вам придётся ехать к мастеру, проверять трубки и радиатор.

Второй на очереди стоит электрика. Проверьте провода на датчики давления, они расположены на радиаторе кондиционера, а в случае системы с аккумулятором – еще и на нем. Они должны быть целы. Проверьте предохранители муфты кондиционера и системы климат-контроля и вентиляторов радиатора. Визуально попробуйте оценить работоспособность муфты, если есть возможность. Проверьте наличие ремня на шкиве кондиционера.

Если компрессор включается, но холода нет, то полезно определить количество фреона. Обычно на трубках есть глазок для визуальной оценки состояния контура. Если при включении сначала проходят пузырьки, а потом их почти не остается, значит, компрессор качает, и фреона достаточно. Проблема кроется либо в клапане ТРВ, либо в работе конденсатора и вентиляторов. Если пузырьки идут постоянно, то есть беда с количеством фреона, нужно просто дозаправить систему. Если в глазке просто белая взвесь, то фреона почти нет, нужно срочно выключить систему и дозаправить ее.

Можно для гарантии потрогать трубки рукой. Магистраль низкого давления к компрессору должна быть холодной. Если она ледяная, а в салоне жарко, то что-то не так с системой смешения потоков воздуха, или испаритель просто забит грязью снаружи. Трубка высокого давления на радиатор кондиционера должна быть горячей. Это означает, что компрессор работает, хотя бы частично.

Собственно, дальше без манометра и специальной заправочной станции сделать что-то не получится. Если компрессор слабо качает, фреона немного, но есть, или если система регулирования работает некорректно, то придется диагностировать систему у специалиста. И помните: не бывает неремонтируемых узлов, трубки сваривают даже алюминиевые, радиаторы чинят и меняют, компрессоры стоят не миллионы.

О «правильных» ценах на типичный ремонт поговорим в следующем материале.

Основные неисправности компрессора

К основным неисправностям герметичных компрессоров малых холодильных установок (кондиционеров) относятся механические и электрические дефекты.

МЕХАНИЧЕСКИЕ ДЕФЕКТЫ
Одним из механических дефектов является заклинивание компрессоров. Этот дефект составляет 20% всех неисправностей. У некоторых компрессоров с однофазным электродвигателем он составляет до 40%.

Основными причинами заклинивания компрессоров являются следующие:

1. Перетекание жидкого хладагента в картер компрессора
При стоянке компрессора жидкий хладагент может накапливаться в картере компрессора. При запуске компрессора масляный насос в первые моменты времени будет подавать вместо масла жидкий хладагент, не обладающий хорошими смазывающими свойствами. В результате этого возможно заклинивание или сильный износ движущихся частей компрессора. Чтобы предотвратить негативные последствия перетекания хладагента, рекомендуется:

  • контролировать перегрев всасывающих паров хладагента, чтобы избежать чрезмерного охлаждения компрессора во время работы;
  • устранять любую возможность задержки масла во всасывающей линии компрессора;
  • применять электронагреватель картера компрессора для поддержания температуры масла во время стоянки компрессора.

2. Недостаточное количество масла в картере компрессора
Причинами, приводящими к быстрому износу компрессора являются:

  • плохой возврат масла в картер компрессора;
  • вспенивание масла в картере при пуске компрессора.

Небольшое количество масла при работе компрессора выносится в нагнетательную линию и циркулирует в смеси с хладагентом по системе. Нормальным считается циркуляция масла в количестве примерно 1% от массы циркулирующего хладагента. Для компрессора производительностью 1,1 кВт это составляет 1 кг/ч. Стандартная зарядка маслом такого компрессора 1,2 кг. Производители выбирают масло в количестве, достаточном для обеспечения хорошей растворимости и беспрепятственной циркуляции. При проектировании холодильной системы должны быть предусмотрены условия для возврата масла в компрессор, а именно: оптимальная скорость хладагента в трубопроводах и рациональное их расположение.

Рекомендуемые минимальные скорости потока следующие:

  • для горизонтальных и наклоненных трубопроводов в направлении движения хладагента не менее 4 м/с;
  • для вертикальных трубопроводов при движении хладагента вверх не менее 8 м/с.

Во избежание большого гидравлического сопротивления и шума максимальная скорость не должна превышать 16–48 м/с.
В трубопроводах длиннее 30 м желательно иметь сифоны; в горизонтальных участках — небольшой наклон в направлении движения хладагента (не менее 12 мм на погонный метр).
При этом необходимо обеспечивать правильную заправку маслом согласно рекомендациям завода-изготовителя и предусматривать на трубопроводах наличие маслоподъемной петли.

3. Вспенивание масла в картере компрессора
Явления, происходящие в картере компрессора при пуске, описаны выше, так же, как и их последствия. Признаком дегазации масла может быть очень низкий уровень шума при пуске компрессора, поскольку паромасляная эмульсия обладает звукоизолирующими свойствами. Поэтому необходимо постоянно следить за указателем уровня масла.

4. Проникновение жидкого хладагента в цилиндры компрессора
При попадании жидкого хладагента или масла в цилиндры компрессора может произойти поломка клапанов, разрушение прокладки, заклинивание, иногда одновременное возникновение этих повреждений. В результате миграции жидкого хладагента при стоянке компрессора может происходить его накапливание в нагнетательной полости компрессора вплоть до клапанов. При пуске это приводит к резкому увеличению нагрузки на поршни и подшипники компрессора. Поэтому во избежание данных дефектов необходимо постоянно следить за состоянием клапанов и герметизирующих прокладок.

5. Загрязнения холодильного контура.
В случае попадания в систему твердых частиц они могут вызывать износ и заклинивание движущихся частей компрессора. Поэтому необходимо тщательно следить за чистотой системы, особенно при подготовке и монтаже трубопроводов и применять фильтр на линии всасывания в компрессор.

6. Наличие некондиционируемых газов (воздуха) в компрессоре
Данный дефект встречается примерно в 5% случаев. Попадание воздуха в компрессор происходит при нарушении герметизации компрессора в контакте с окружающей средой, либо в результате негерметичности линии всасывания. Особенно опасно попадание в систему воздуха с высокой влажностью. В результате происходит разложение масла (гидролиз), перегрев электродвигателя и клапанов, разрушение узлов и деталей компрессора. При гидролизе масла образуются кислоты, которые разрушают обмотку электродвигателя.

Наличие воздуха в системе приводит к повышению давления и температуры конца сжатия, перегреву клапанной группы, карбонизации масла, разрушению прокладок, перегреву обмоток электродвигателя.

В целях профилактики следует предотвращать контакт внутренних полостей компрессора с окружающей средой, следить за состоянием трубопроводов, за величиной давлений на линии всасывания и нагнетания. При отклонении этих значений давления от заданных в системе возможно наличие воздуха. Поэтому необходимо в этом случае остановить компрессор, произвести вакуумирование системы и восстановить герметичность системы.

7. Неисправность клапанов и прокладок, разрушение нагнетательного трубопровода
Корпус компрессора внутри кожуха имеет предохранительную пружинную подвеску. Нагнетательный патрубок также снабжен виброгасителем.
При сложных условиях транспортировки и при работе с частыми пусками и остановками в нагнетательном патрубке может возникнуть течь хладагента. Иногда это может произойти с поломкой пружинной подвески компрессора. При наличии данных неисправностей необходимо произвести замену разрушенных деталей.

8. Повышенный шум и затрудненный пуск компрессора
Причины появления повышенного шума самые различные. Чаще всего — плохое крепление трубопроводов, работа в условиях, не предусмотренных для данной холодильной системы, неправильное электрическое соединение, попадание жидкости в компрессор и др.
Затрудненный пуск встречается у малых компрессоров как холодильных установок, так и систем кондиционирования воздуха. Электродвигатели этих компрессоров очень чувствительны к колебаниям напряжения в электросети, а также к изменениям уровней давления в момент пуска, которые могут возникнуть при отклонениях температуры окружающего воздуха от допустимой. Поэтому при появлении повышенного шума необходимо отключить установку и проверить в первую очередь крепление трубопроводов и электропроводки.
При повышенном шуме работающего внешнего блока бытового кондиционера следует обратить внимание на правильность установки компрессора на резиновые амортизаторы и их состояние. Резина со временем теряет эластичность и продавливается под тяжестью компрессора. Замечено, что лучшие свойства показывают силиконовые амортизаторы. При замене компрессора, как правило, меняют пусковой конденсатор и резинки. После замены важно правильно зафиксировать амортизаторы, не перетягивать, а обеспечить зазор между резиновой втулкой и гайкой, как показано на рисунке.

ЭЛЕКТРИЧЕСКИЕ ДЕФЕКТЫ

1. Искрение в электрических соединениях
Данный дефект составляет около 20% от всех электрических дефектов, т. е. около 6% всех неисправностей. Он возникает при подаче напряжения на электродвигатель, если компрессор находится под вакуумом, особенно при резких изменениях напряжения в электросети. Искрение осуществляется между клеммами или между клеммами и корпусом электродвигателя, а также в его обмотках, что объясняется возникновением коронного разряда.
Поэтому не следует подавать напряжение, когда компрессор находится под вакуумом. Подача напряжения возможна только после заполнения компрессора хладагентом до давления выше атмосферного. Убедиться в полноте заполнения можно по показаниям манометров.

2. Сгорание пусковой обмотки электродвигателя
Данный дефект составляет около 80% всех электрических неисправностей (для однофазных электродвигателей), или 22% всех неисправностей компрессоров.
Перегорание пусковой обмотки происходит либо из-за перегрева вследствие длительной работы электродвигателя, либо из-за высокой силы тока, потребляемой электродвигателем.

Причинами данной неисправности являются:

  • неправильное соединение обмоток электродвигателя;
  • неправильный монтаж реле тока или его неисправность;
  • повышенная частота пусков компрессора в течение часа;
  • реле пуска не соответствует данному типу компрессора;
  • использование неисправного реле пуска;
  • несоответствие напряжения сети.

Следствием неправильного соединения обмоток электродвигателя может стать повреждение пускового конденсатора; причем сгорание обмотки и повреждение конденсатора может произойти одновременно за очень короткое время.
Чтобы избежать данной неисправности, необходимо тщательно следить за правильностью соединений обмоток электродвигателя.
Признаком неправильного соединения может служить повышенный уровень шума и вибраций при пуске компрессора.
При неправильном монтаже реле тока, при больших (свыше 15°) отклонениях от вертикального положения, реле не срабатывает и пусковая обмотка и конденсатор оказываются постоянно под напряжением, что приводит к их перегоранию. Поэтому реле должно находиться в электрической коробке и иметь четкую фиксацию своего расположения. Реле напряжения менее чувствительно к изменению своего положения, тем не менее, на его работу, т. е. на частоту включений-выключений, может оказать влияние отклонение от нормальной позиции. При пуске компрессора, через пусковую обмотку электродвигателя протекает большой ток, вызывающий ее нагревание. Поэтому время между пусками компрессора должно быть достаточным для охлаждения пусковой обмотки. Согласно инструкции по эксплуатации допускается производить не более 10–12 циклов в течение часа, нормальной считается работа с 5–7 циклами. Для предотвращения сгорания пусковой обмотки при частых пусках-остановках компрессора рекомендуется использовать реле времени для задержки пуска компрессора.

При замене реле тока или напряжения следует применять только то реле, которое рекомендуется заводом-изготовителем для данного вида компрессора. Значения напряжений включения и отключения находятся в зависимости от параметров обмотки и электрической сети. Колебания напряжения в электрической сети непосредственно влияют на работу реле тока или напряжения. Повышенное напряжение по сравнению с номинальным, может стать причиной постоянной работы пусковой обмотки электродвигателя, а пониженное напряжение приводит к невозможности пуска компрессора, либо к быстрому отключению компрессора сразу после пуска. Реле напряжения, рассчитанное, например, на напряжение 110 V, при напряжении в сети 220 V не отключится после пуска компрессора. Вследствие этого пусковая обмотка и конденсатор будут постоянно находиться под напряжением, что вызовет срабатывание системы автоматической защиты.
Пониженное напряжение в сети в большинстве случаев является основной причиной перегорания обмоток электродвигателей компрессоров. При низком напряжении двигатель работает в критических условиях, через обмотку якоря электродвигателя протекает сила тока больше той, на которую он рассчитан, и при сколько-нибудь длительной работе отказ электродвигателя только вопрос времени. Низкое питающее напряжение в несколько раз уменьшает срок службы электродвигателя, а дальше — замена компрессора с электродвигателем.

Косвенным признаком неполадок в питающей сети является частое перегорание ламп накаливания и различимое человеческим глазом мигание.

3. Перегорание основной обмотки электродвигателя
Данный дефект составляет около 3,5% всех электрических неисправностей компрессоров с однофазными электродвигателями.
Причинами перегорания основной обмотки являются следующие:

  • неправильно подобран электродвигатель компрессора;
  • загрязненная или недостаточная поверхность теплообмена конденсатора;
  • плохой отвод теплоты в конденсаторе.

Подобранный электродвигатель компрессора должен обеспечивать эффективную работу компрессора на определенном хладагенте в заданном температурном интервале при требуемых параметрах электрической сети.

Любые отклонения от данных факторов приводят:

  • к перегреву компрессора;
  • неэффективному процессу теплообмена с окружающей средой;
  • недостаточной производительностью компрессора.

Ссылка на основную публикацию
Adblock
detector