Evasamara.ru

Авто журнал
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Преобразователь напряжения большой мощности

Выбор инвертора (преобразователя напряжения)

Инвертором называют устройство, преобразующее постоянный ток в переменный, меняя при этом величину напряжения.

Инверторы, преобразующие 12 В или 24 В в 220 В, становятся все востребованнее – ведь сфер применения этим приборам много:

  • автопутешествия – в дороге через инвертор к автомобильному аккумулятору можно подключить необходимые приборы – холодильник, насос, электроинструмент;
  • использование в системах альтернативных источников энергии — к примеру, для потребления электричества, выработанного солнечными батареями;
  • организация резервного источника электроснабжения для домашних нужд. Простая связка автомобильный аккумулятор + инвертор при неожиданном отключении электричества как минимум поддержит освещение в доме. Такая схема, кстати, имеет очень большое распространение в соседнем Китае – там аккумуляторы с инверторами нередкие гости в домах;
  • на даче или при строительстве загородного дома, кода линия электричества еще не подведена, или ее в принципе нет, а бензогенератор ставить не хочется.

И это еще не все ситуации, когда инвертор облегчит вам жизнь.

Если вы уже задумались о покупке такого прибора, то следует разобраться – какие виды преобразователей напряжения бывают, и как подобрать оптимальный вариант под ваши нужды, не переплачивая лишних денег.

Первое, с чем нужно определиться – зачем вам нужен инвертор?

Самые простые, миниатюрные и маломощные инверторы, подключаемые в машинахк прикуривателю, организуют «обычную розетку» для подключения прибора небольшой мощности – зарядки телефона или ноутбука, подзарядки фонарика. При этом не нужно будет возить с собой ворох проводов, для питания каждого из устройств от прикуривателя. Вы просто будете подключать родной провод в организованную розетку.

Через автомобильный прикуриватель не стоит подключать инвертор с нагрузкой выше 150 Вт – можно вывести из строя всю электропроводку автомобиля и нарваться на дорогостоящий ремонт. Потребителей выше 150 Вт следует подключать только напрямую к аккумулятору, через клеммы.

К таким преобразователям можно подключить уже более мощные приборы. Для уменьшения потерь КПД и надежности, подключение мощных инверторов к клеммам аккумулятора следует проводить не «крокодильчиками», которыми иногда комплектуется прибор, а медными клеммами, под винт. Сечение и длину проводов подключения выбирайте исходя из расчета потерь тока, а не по нагреву.

Следующее, на что стоит обратить внимание – форма тока, которую выдает инвертор. Это важный момент, так как он определяет, какое оборудование вы сможете подключить к инвертору. Есть два вида:

  • чистая синусоида – токовая кривая в виде ровной синусоиды. К такому инвертору можно подключать любые приборы, без опасений за их сохранность. Недостатком этого типа можно назвать только высокую стоимость – для получения чистого синуса требуется сложная электрическая схема.

  • модифицированная синусоида – вид токовой кривой, напоминающей синусоиду, но на деле являющейся ступенчатой характеристикой. К инвертору с модифицированным синусом не стоит подключать: асинхронные двигатели, компрессоры, чувствительные к помехам устройства. Приборы даже если и будут работать при таком питании, но с заметным ухудшением качества – звуковая аппаратура будет «фонить», насосы и двигатели сильно греться и шуметь. Самое меньшее зло в этой ситуации будет – уменьшение КПД, большее (при постоянной эксплуатации) – их скорый выход из строя, из-за тяжелого режима работы.

Но это не значит, что инвертор с модифицированным синусом использовать не рекомендуется. Он не окажет негативного влияния на качество работы ламп освещения, нагревательных приборов, оборудования с импульсными блоками питания (ноутбуки, телефоны), большинство телевизоров, электроинструмент с коллекторными двигателями (лобзики, дрели). Однако для обеспечения работы электроинструмента от инвертора лучше докупить устройство плавного пуска – чтобы пусковые токи не выходили за пределы допустимого.

При выборе инвертора обязательно нужно продумать, что вы хотите к нему подключать, и уже после этого решать – готовы вы платить за устройство с чистым синусом, или оптимальной покупкой для вас будет менее дорогое устройство с модифицированной синусоидой.

Все преобразователи напряжения обладают двумя характеристиками по мощности –постоянная мощность и пиковая мощность прибора. Нужно различать эти два параметра.

Постоянная мощность говорит о том, с какой нагрузкой сможет справляться инвертор в длительном режиме работы. В зависимости от потребностей, можно подобрать устройство как невысокой мощности от 60 до 1000 Вт, так и серьёзный агрегат с мощностью от 1000 Вт и выше, позволяющий организовать мини-электростанцию на выезде.

Постоянную мощность необходимо выбирать таким образом, чтобы оставался запас, хотя бы 20 % – ни одно устройство не будет работать хорошо на пределе своих возможностей, поэтому не экономьте на этом моменте. Также не следует забывать о возможностях аккумулятора, ведь его емкость ограничена.

Пиковая мощность определяет предельную кратковременную нагрузку – от 150 до 10000 Вт. К примеру, пусковой ток холодильника, подключаемого к инвертору, как правило, в несколько раз выше номинальной мощности – это следует учитывать. Если вы не рассчитаете мощность инвертора для покрытия пускового тока, то прибор-потребитель не сможет начать работать.

Если инвертор будет работать от аккумулятора не снятого, а работающего от генератора машины, помните, что ток нагрузки инвертора не должен превышать выдаваемого тока генератора.

На деле подбор подходящей мощности не так уж и сложен, рассмотрим пример.

Подключаемая нагрузка: холодильник (15 Вт), зарядка ноутбука (80 Вт), зарядка телефона (60 Вт). Здесь, конечно, следует учесть пусковой ток холодильника, превышающий номинальный в 3-4 раза. Получится, что в момент включения холодильник потребит (в худшем случае) до 60 Вт. В итоге имеем, что для означенной нагрузки нам хватит инвертора в 300 Вт.

Конечно, не все инверторы работают с высоким КПД, при расчете мощности следует плюсовать к нагрузке еще возможные потери в кабеле, в зажимах и прочее – но вцелом видно, что для обеспечения минимально необходимых нужд сильно мощный инвертор не нужен. В большинстве случаев для комфортного туризма хватит прибора мощностью до 600 – 700 Вт, то есть с суммарным током нагрузки около 50 А, что гораздо меньше тока стандартного генератора на современных машинах.

Другой расклад получается, если вы захотите использовать инвертор для подключения электроинструмента – лобзиков, дрелей и др. Здесь уже целесообразно использование мощных инверторов – от 1 кВт и выше.

Преобразователи напряжения бывают различного уровня входного напряжения. Устройства до 2,5-3 кВт как правило работают от входного напряжения 12 В. Более мощные устройства, рассчитанные на выдачу нескольких киловатт, выпускаются на более высокие уровни напряжения – 24 и 48 В. Поэтому, выбирая инвертор, обратите внимание не только на мощность, но и на параметры входного напряжения:

  • максимальное входное напряжение от 12 до 30 В
  • минимальное входное напряжение от 9,2 до 24 В

Практически все инверторы оборудованы теми или иными видами защит, которые следят за параметрами работы, и помогают избежать критических ситуаций, действуя на отключение или звуковой сигнал:

Для подключения нагрузки у преобразователей напряжения могут быть предусмотрены различные выходы:

Устройство с необходимыми вам типами и количеством выходов выбирайте исходя из того, какое оборудование нужно подключить. Выходы постоянного тока с уровнем напряжения 12 – 28 В понадобятся для подключения специального автооборудования: магнитол, ТВ-приемников, подогрева сидений, автохолодильников). USB-порты пригодятся для подзарядки мобильных устройств. Выходы в виде розеток потребуются для «универсального» подключения электроприборов. При этом типы розеток могут быть различны:

Также встречаются преобразователи напряжения, не рассчитанные на подключение потребителя 220 В, и преобразующие 24 В в 12 В и 12 В в 24 В – у таких устройств розеток нет.

Читать еще:  Где стоит предохранитель на прикуриватель

Длина кабеля инвертора может достигать 100 м. С одной стороны, кабель длиной 10-100 м — это удобно: обеспечивает мобильность устройства, его можно переносить, не трогая аккумулятор. С другой стороны, не стоит забывать, что каждый кабель является слабым звеном электросистемы, так как на нем происходят потери мощности. Поэтому не стоит гнаться за длиной кабеля. Лучше обратите внимание на его качество – чем толще кабель, тем выше его сечение и меньше потерь электричества он будет создавать. Чем гибче кабель – тем качественнее его материалы и меньше вероятность повреждения от загибов.

Инверторы выпускаются в корпусах из различных материалов:

С точки зрения пассивного охлаждения лучше всего инверторы в алюминиевом корпусе – он обеспечивает максимальный отвод тепла. Но для инверторов с активным охлаждением (вентилятором в корпусе), где проблема отвода тепла решена, лучшим вариантом будет корпус из стали – как более прочный. Комбинированные корпуса из алюминия+пластик или стали+пластик тоже хороший вариант, а вот корпус из одного пластика допустим только для маломощного прибора.

Устанавливать любой инвертор в машине необходимо так, чтобы обеспечивалось его охлаждение, то есть он не должен быть закрыт. Засунуть работающий инвертор в бардачок или в кейс – не лучший вариант.

В недорогом ценовом сегментедо 1400 рублей вы найдете инверторы небольшой мощности – до 200 Вт, с модифицированной синусоидой, рассчитанные на подключение к прикуривателю и питание мелких приборов.

В среднем ценовом сегменте от 1400 до 5000 рублей уже встретятся приборы помощнее – до 800 Вт, рассчитанные по большей части на подключение к аккумулятору, но все с той же модифицированной синусоидой.

В дорогом ценовом сегменте от 5000 и выше можно найти приборы как с чистым синусом, так и с модифицированным, но высокой мощности – до 5000 Вт.

Можно подвести итог: при выборе инвертора, не гонитесь за высокой мощностью прибора, т.к. все остальное оборудование может не вывезти такую нагрузку. Лучше обратите внимание на качество сборки, комплектующие и материалы. Стоить хороший качественный прибор даже средней мощности не будет дешево. Для некоторых видов оборудования подойдет инвертор только с чистым синусом на выходе. Не поленитесь рассчитать нагрузку перед подключением – и у вас не будет неприятных сюрпризов в последствии.

Простой инвертор 12-220 до 400 ватт, схема

Сегодня покажу процесс постройки компактного преобразователи напряжением 12 на 220 вольт со стабилизацией выходного напряжения. Сразу скажу, что этот преобразователи выдаёт на выходе постоянное напряжение к нему можно подключать всё кроме устройств содержащих в своем составе сетевые железные трансформаторы или двигатель переменного тока.

Наш преобразователь может обеспечить выходную мощность в 120 ватт, хотя при желании с некоторыми изменениями можно получить и до 400 ватт об этом расскажу походу.

Из недостатков; отсутствует защита от коротких замыканий, поэтому по входу и по выходу стоит добавить предохранителей. Возможно в дальнейшем доработаю схему и присобачу сюда электронную защиту.

Ноутбуки, телевизоры и прочие устройства смело можно подключать и даже компьютер, если слегка увеличить мощность преобразователя, фишка имена в стабильно выходном напряжении. Тут имеется обратная связь и микросхема шим следит за напряжением.

Теперь о конструкции;

Это повышающий двухтактный DС-DС преобразователь, основой служит шим контроллер SG3525, в отличие от старой доброй TL494 эта микросхема имеет мощный выход и способна управлять полевыми транзисторами с большой ёмкостью затвора без дополнительного драйвера.

Выходы микросхемы нагружены затворами полевых ключей,

ключи в свою очередь управляют импульсным трансформатором, обратная связь то напряжение организовано на паре стабилитронов и оптроне, стабилитроны задают нужное значение выходного напряжения,

в этом варианте 2 стабилитрона подключены последовательно.

Желательно использовать стабилитроны с одинаковым напряжением стабилизации,например 2 по 110 вольт.

Оптопара — любая в моём случае выдрана из компьютерного блока питания,

на корпусе подобных оптронов имеется ключ в виде точки, он также нарисован на печатной плате чтобы начинающие не перепутали подключения.

Полевые транзисторы в этом образце стоять IFRZ44, хотя можно и более мощные. Ключи устанавливаются на общий радиатор, притом их нужно изолировать от радиатора с помощью слюдяных прокладок.

Рабочая частота микросхема шим с таким раскладом составляет от 47 до 50 кГц в зависимости от погрешности компонентов. На плате предусмотрен контроль, то есть схема запустится при подачи слаботочного плюса на схему контроллера или же добавлением маломощного выключателя.

Это сделано для того, чтобы вам не пришлось каждый раз отключать силовые провода от аккумулятора, в бесперебойниках довольно пригодная функция.

Так же имеется индикаторный светодиод и функция защиты от обратной полярности, организована эта функция на базе обыкновенного диода, который попросту запирается в случае если вы перепутайте полярность питания.

Трансформатор… — его намоточные данные;

В этом варианте использован сердечник от компьютерного блока питания с реальной габаритной мощностью не более 130 ватт.

Первичная обмотка намотана жгутом из 4 проводов по 0.6 миллиметров, в каждом плече пять веков.

Затем обмотки сфазированы следующим образом для образования средней точки.

Поверх поставил изоляцию из термостойкого скотча.
Вторичная обмотка намотана проводом 0,5 миллиметров содержит 105 витков, через каждые 30 витков также поставил изоляцию.

В выходной части использован двухполупериодный выпрямитель на базе импульсных диодов FR107, подойдут любые импульсные или быстродействующие диоды с током не менее 1 Ампера и с обратным напряжением не менее 400 вольт.

Правильно собранный инвертор почти что не нуждаются в настройке, перед сборкой нужно проверить все компоненты на работоспособность.

До пайки трансформатора стоит проверить наличие импульсов на затворах полевых ключей, лишь после этого подключается импульсный трансформатор.

Ток холостого хода всего в 50-60 ма, это очень хорошо даже для такого маленького инвертора. Всё это благодаря обратной связи и шин управления.

Минимальное напряжение питания 8-9 вольт, следовательно такой инвертор может сильно разрядить ваш АКБ, поэтому советую отслеживать напряжение на последнем или дополнить схему простой функцией защиты от пониженного напряжения.

Для увеличения выходной мощности полевики нужно заменить на более мощные, скажем на IRF3205, добавить вторую пару, заменить силовой трансформатор, также выходной выпрямитель, электролитический конденсатор и естественно предохранитель. В итоге схема будет выглядеть следующим образом.

С таким раскладом инвертор может развивать мощность в 300-400 Ватт.

Автор: АКА КАСЬЯН

Больше интересных статей можно почитать на сайте 100-советов.рф

Подписывайтесь на канал, будет много интересных статей. Поставьте пожалуйста палец вверх, если понравилась статья.

Инвертор с высоким КПД с встроенным зарядным устройством

Инвертор с высоким КПД 96% с встроенным зарядным устройством.

Многофункциональный инвертор с высоким КПД с встроенным зарядным устройством преобразовывает напряжение 12/24/48В в переменное 220 В мощностью от 1.3 кВт до 20 кВт. Инвертор с высоким КПД работает со всеми типами аккумуляторных батарей (а также суперконденсаторами), имеет высокий КПД 96%.

Описание:

Многофункциональный инвертор с высоким КПД с встроенным зарядным устройством преобразовывает напряжение 12/24/48В в переменное 220 В мощностью от 1.3 кВт до 20 кВт.

Инвертор с высоким КПД работает со всеми типами аккумуляторных батарей (а также суперконденсаторами ), имеет высокий КПД 96%.

Отличительной особенностью инвертора является использование в конструкции инвертора низкочастотных торов.

Читать еще:  Преобразовать ток из 12 вольт в 220

Совместно с несколькими аккумуляторами , инвертор с высоким КПД может работать как автономный источник бесперебойного питания для дома. Если есть сетевое 220 В – он просто пропускает его “сквозь” себя и, при необходимости, инвертор с высоким КПД подзаряжает аккумуляторы , если исчезло сетевое 220 В – мгновенно начинает генерировать 220 от аккумуляторов; время автономной работы зависит от нагрузки и ёмкости аккумуляторов. При появлении сетевого 220 В, прибор – инвертор с высоким КПД переключится в исходное состояние. Если перебои с электричеством очень длительные, или его вообще нет, очень выгодно использовать инвертор с высоким КПД совместно с мини-электростанцией. В этом случае, включая электростанцию всего на 5-6 часов в день, вы обеспечите объект круглосуточным электричеством.

Преимущества:

высокая пиковая мощность – в 2 – 2,5 раз выше номинальной (5 c),

– возможность работы с аккумуляторами любого типа (все кислотные, гелевые , AGM, щелочные и литий железо-фосфатные, причём можно самостоятельно запрограммировать и любые другие, которые могут появиться в будущем). Для работы с LiFeYPO4 АКБ, предусмотрен автоматически отключаемый выход на BMS (для его управления и питания),

сверхмалое потребление энергии при генерации 220 В на холостом ходу (ток ХХ 0,2 – 0,4А благодаря дорогому трансформатору в виде тора). Возможность включения спящего режима (автоматическое включение/выключение генерации 220 В только при появлении/исчезновении нагрузки),

– возможность работы в трёхфазной системе (как с сетью, так и автономно),

возможность параллельной работы до 9 шт инверторов, в том числе до 9 шт на каждую фазу в трёхфазной системе,

– форма выходного сигнала – чистый синус (точность на номинальной мощности 3%),

автоматический запуск резервного бензинового , дизельного, газового генератора (электростанции) и дальнейшее управление ею,

– режим поддержки сети (или генератора): автоматическое “добавление” мощности инвертора к сетевой (или к мощности генератора) при пиковых нагрузках. Например, если на дом выделено только 5 кВт мощности, то используя МАП 12,0 кВт с АКБ, можно увеличить мощность вплоть до 11 кВт, причём прибор будет сам, при необходимости, автоматически переходить на АКБ и добавлять к имеющейся сетевой, необходимую мощность от АКБ,

установка периодов времени поддержки сети, заряда АКБ и работы генератора, приоритета аккумуляторов (режим ЭКО). Возможность использования двухтарифного режима (приоритетная зарядка АКБ в ночное время и приоритетная генерация от АКБ в дневное время),

– режим “добавления” (смешения) энергии от альтернативного источника энергии для экономии или продажи энергии в сеть, причём АКБ при этом можно не задействовать (однако наличие хотя бы минимальной ёмкости АКБ необходимо),

возможность работы с сетевыми инверторами,

– возможность прямого подключения к компьютеру для мониторинга и программирования. Разработано бесплатное ПО для мониторинга электросетей, в том числе дистанционно, и управления инвертором. Некоторые модели инвертора для этих целей оснащены собственным встроенным микрокомпьютером. Также можно использовать коммуникатор или планшет в качестве дистанционного табло,

– автоматическое отключение при перегрузке, перегреве, от разряда и от перезаряда АКБ,

– низкая цена.

Применение:

– при отсутствии централизованного энергоснабжения;

– при отключении и перебоях в энергоснабжении;

– при недостаточности доступной мощности;

– для работы в системе с возобновляемыми источниками энергии ( солнечные панели и ветрогенераторы );

– при накоплении энергии от автономных источников (бензо-, дизель- и газогенераторы) для снижения шумового воздействия и увеличения срока эксплуатации генераторов.

Системы используются так же в специализированном транспорте: МЧС, МВД, водный транспорт, лаборатории, машины скорой помощи, ремонтные бригады различных направлений деятельности, системы ВПК, где необходимо в полевых условиях иметь электросеть 220 В или 380 В. и др.

купить саипа сварка автомобильный простой сварочный аппарат полуавтомат инвертор кедр радуга напряжения 500 12 220 схема 12 в 24 в 50гц 3 квт на edon lv ресанта саи 220 110 220в вольт 1000 вт 1500 2000w 2000вт 3000вт из блока питания компьютера своими руками москва чистый синус с чистой синусоидой в москве купить форум отзывы видео
простая схема схемы трансформатор для простейшего сварочного инвертора ресанта саи 12 220 вольт
ремонт инверторов автомобильные инверторы напряжения 12 220 вольт купить

Повышающие трансформаторные преобразователи напряжения большой мощности

Повышающие трансформаторные преобразователи напря­жения на транзисторах широко используются в нестационарных и полевых условиях для замены сети 220 В 50 Гц для питания сете­вой аппаратуры и приборов.

Такие преобразователи должны обеспечивать выходную мощность от единиц до сотен ватт при питании от аккумуляторов или генераторов постоянного тока напряжением от 6 до 24 В.

Обычно в качестве преобразователей напряжения повы­шенного напряжения используют автогенераторные преобразо­ватели или трансформаторнью преобразователи с внешним возбуждением.

Пример двухтактного трансформаторного автогенератора [10.1], преобразующего постоянное напряжение 12 Б в перемен­ное 220 В, показан на рис. 10.1. Преобразователь работает на по­вышенной частоте преобразования — 500 Гц (под нагрузкой) и 700 Гц на холостом ходу. КПД преобразователя около 75%. Такой преобразователь можно использовать, преимущественно, для пи­тания активной нагрузки, например, паяльника, осветительной лампы. Его выходная мощность — до 40 Вт.

Резистор R1 является ограничителем базового тока. Цепь R2, С1 создает запускающий импульс тока в момент включения питания генератора. Дроссель L1 ДПМ-0,4 снижает вероятность самовозбуждения преобразователя на повышенной частоте (бо­лее 10 кГц).

Для трансформатора Т1 использован магнитопровод транс­форматора кадровой развертки (ТВК). Все его обмотки перемо­таны. Обмотки I и II содержат по 30 витков провода ПЭВ 0,6…0,8. Обмотка III содержит 20 витков провода ПЭВ 0,16…0,2; обмотка IV — 1000 витков такого же провода. Намотка обмоток I и II ве­дется одновременно в два провода виток к витку. Обмотка III

Рис. 10.1. Схема преобразователя напряжения средней мощности

Рис. 10.2. Схема мощного преобразователя напряжения

наматывается также виток к витку. Обмотка IV — внавал равно­мерно по каркасу.

Повышающий трансформаторный преобразователь напря­жения аккумулятора (рис. 10.2) позволяет получить на выходе на­пряжение 220 В 50 Гц, потребляя при напряжении 12 В ток 5A[^ 0.2].

В основе устройства — задающий генератор прямоуголь­ных импульсов, выполненный по схеме мультивибратора, типовая схема которого была приведена ранее на рис. 1.1. Рабочая часто­та этого генератора должна быть 50 Гц. Поскольку выходная мощность задающего генератора невелика, к выходам мульти­вибратора подключены двухкаскаднью усилители мощности, по­зволяющие получить усиление по мощности до 1000 раз.

На выходе усилителя включен повышающий низкочастотный трансформатор Т1. Диоды VD1 и VD2 защищают выходнью транзи­сторы преобразователя при их работе на индуктивную нагрузку.

В качестве трансформатора Т1 можно использовать унифи-цированнью трансформаторы типа ТАН или Г/7/7. Транзисторы VT1 и VT4 допустимо заменить на КТ819ГМ (с радиаторами); VT2 и VT3 — КТ814, КТ816, КТ837; диоды VD1 и VD2 — Д226.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.3) может обеспечить выходную мощность 100 Бт [10.31.

Рис. 10.3. Схема преобразователя напряжения мощностью 100 Вт

На преобразователь подается постоянное напряжение 12 Б от аккумулятора. Его задающий генератор формирует два пара-фазных напряжения с частотой 50 Гц (частота промышленной сети). Напряжения с задающего генератора подаются на два од­нотипных импульсных усилителя, которью коммутируют напряже­ние на первичной обмотке трансформатора Т1. Со вторичной обмотки трансформатора Т1 переменное напряжение 220 Б час­тотой 50 Гц поступает в нагрузку.

Задающий генератор (см. типовую схему узла на рис. 1.1) на основе симметричного мультивибратора отличается использо­ванием диодов, включенных в базовью цепи транзисторов. За счет нелинейности БЛХ диодов выходные импульсы мультивибра­тора имеют незначительные выбросы.

Читать еще:  Ваз 2115 не работает печка прикуриватель

К выходам задающего генератора подключены два одно­типных трехкаскадных усилителя. На вторичной обмотке Т1 полу­чается переменное напряжение 220 Б.

Силовой трансформатор Т1 намотан на Ш-образном магни­топроводе сечением 12 сь/. Первичная обмотка содержит две по­ловины по 240 витков провода НЭП 0,65 мм. Вторичная обмотка имеет 4400 витков провода НЭП 0,25 мм.

Выходные транзисторы VT1 и VT6 установлены на радиато­ры площадью по 100 cf/.

Для защиты выходных транзисторов следует использовать вьюокочастотнью диоды VD1 и VD2 типа КД213, КД2997. Транзи­сторы VT1 и VT6 можно заменить на КТ819ГМ (с радиаторами); VT2 и VT5 — КТ805; VT3 и VT4 — КТ208.

Схема простого преобразователя напряжения, позволяю­щего при питании от автомобильного аккумулятора 12 В получить на выходе напряжение 220 В 50 Гц, показана на рис. 10.4. [10.4]. Максимальная выходная мощность преобразователя — 100 Вт, КПД —до 50%.

Рис. 10.4. Схема простого преобразователя напряжения

Устройство потребляет от аккумулятора ток до 20 Л.

В качестве силового использован готовый сетевой транс­форматор на 100 Вт (сечение центральной части железного сер­дечника — около 10 cм^). У него должны быть две вторичные обмотки, рассчитанные на 8 Б/10 Л каждая.

Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R3 и R4.

Преобразователь напряжения повышенной мощности рабо­тает от аккумуляторной батареи (рис. 10.5) и позволяет получить на выходе переменное напряжение 220 В частотой 50 Гц [10.5]. Мощность нагрузки может достигать 200 Вт.

Трансформатор Т1 намотан на ленточном магнитопроводе ШЛ12х20. Первичная обмотка содержит 500 витков ПЭВ-2 0,21, отвод от середины. Обмотки управления имеют по 30 витков того же провода диаметром 0,4 мм.

Трансформатор Т2 — также на ленточном магнитопроводе ШЛ32х38. Первичная обмотка содержит 96 витков провода ПЭВ-2 2,5, отвод от середины. Вторичная обмотка имеет 920 витков про­вода ПЭВ-2 диаметром 0,56 мм.

Выходные транзисторы устанавливаются на радиаторах площадью по 200 cм^. Сильноточные токовводы должны иметь сечение не менее 4 мм^.

Работа преобразователя проверялась от аккумулятора 6СТ60.

Для питания электробритвы от автомобильной бортовой сети с постоянным напряжением 12 В предназначено следующее устройство (рис. 10.6) [10.6]. Оно потребляет под нагрузкой ток около 2,5 у4.

В преобразователе задающий генератор на триггере DD1.1 вырабатывает частоту 100 Гц. Потом делитель частоты на триг­гере DDI.2 уменьшает ее в 2 раза, а предварительный усилитель на транзисторах VT1, VT2 раскачивает усилитель мощности на транзисторах VT3, VT4, нагруженный на трансформатор Т1. За­дающий генератор обладает стабильностью частоты не хуже 5% при изменении питающего напряжения от 6 до 15 S. Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразова­теля. Микросхема DDI К561ТМ2 <564ТМ2) и транзисторы предва­рительного усилителя питаются через фильтр R9, СЗ и С4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной часто­той около 50 Гц.

Рис. 10.5. Схема преобразователя напряжения повышенной мощности

Рис. 10.6. Схема преобразователя напряжения для питания электробритвы

Трансформатор Т1 можно изготовить на основе любого сетевого трансформатора мощностью 30…50 Вт. Все ранее су­ществовавшие вторичнью обмотки с трансформатора удаляют (сетевая будет служить новой вторичной обмоткой), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 диаметром 1,25 мм две полуобмотки, каждая с числом витков, соответствующим ко­эффициенту трансформации около 20 по отношению к остав­ленной обмотке на 220 В. Если число витков вьюоковольтной обмотки неизвестно, количество витков низковольтной обмотки определяют экспериментально, подбором числа витков до полу­чения на выходе преобразователя напряжения 220 В.

Емкость конденсатора С5 подбирают из условия получения максимального выходного напряжения при подключенной нагрузке.

Схема преобразователя (рис. 10.6) была упрощена В. Ка-равкиным [10.7]. Усовершенствования коснулись только задаю­щего генератора, схема которого показана на рис. 10.7. Этот генератор работает на частоте 50 Гц.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.8) при подключении к автомобильному аккуму­лятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2…3 часов [10.8]. Задающий генератор на симметричном мультивибраторе (VT1 и VT2) нагружен на мощные парафазные ключи (VT3 — VT8), коммутирующие ток в первичной обмотке

Рис. 10.7. Вариант схемы задающего генератора для преобразо­вателя напряжения

Рис. 10.8. Схема преобразователя напряжения на 100 Вт

повышающего трансформатора Т1. Мощные транзисторы VT5 и VT8 защищены от перенапряжений при работе без нагрузки дио­дами VD3 и VD4.

Трансформатор выполнен на магнитопроводе ШЗбхЗб, низ­ковольтные обмотки Г и I» имеют по 28 витков провода ПЭЛ диа­метром 2,1 мм, а повышающая обмотка II — 600 витков ПЭЛ диаметром 0,6 мм, причем сначала наматывают W2, а поверх нее двойным проводом (с целью достижения симметрии полуобмоток) W1. При налаживании с помощью резистора R5 добиваются ми­нимальных искажений формы выходного напряжения.

Схема преобразователя напряжения на 300 Вт показана на рис. 10.9 [10.9]. Задающий генератор преобразователя собран на однопереходном транзисторе VT1, резисторах R1 — R3 и кон­денсаторе С2. Частоту генерируемых им импульсов, равную 100 Гц, D-триггер на микросхеме DDI К561ТМ2 делит на 2. При этом на выходах триггера формируются парафазные импульсы, следующие с частотой 50 Гц. Они через буферные элементы — инверторы /СМО/7-микросхемы К561ЛН2 управляют ключевыми транзисторами (блок 1), включенными по схеме двухтактного усилителя мощности. Нагрузкой этого каскада служит трансфор­матор Т1, повышающий импульсное напряжение до 220 В.

Рис. 10.9. Схема преобразователя напряжения на 300 Вт

Трансформатор Т1 выполнен на магнитопроводе ПЛ25х100х20. Обмотки I и II содержат по 11 витков из алюми­ниевой шины сечением 3×2 мм, обмотка III выполнена проводом ПБД диаметром 1,2 мм и имеет 704 витка.

Приступая к налаживанию устройства плюсовой проводник источника питания отключают от точки соединения обмоток I и II трансформатора Т1 и, пользуясь осциллографом, проверяют час­тоту и амплитуду импульсов на базах транзисторов. Амплитуда импульсов должна быть около 2 S, а их частоту следования, рав­ную 50 Гц, устанавливают резистором R1.

Каждый из выходных транзисторов установлен на теплоот­воде с площадью около 200 см^. Резисторы в коллекторных цепях транзисторов изготовлены из нихромового провода диаметром 1,2 мм (10 витков на оправке диаметром 4 мм). Если их включить в эмиттерные цепи транзисторов, то транзисторы каждого плеча можно будет установить на общий теплоотвод.

Нагрузку к преобразователю допускается подключать толь­ко после того, как на схему будет подано питание.

Все рассмотренные ранее повышающие преобразовате­ли имели нерегулируемое и нестабилизированное выходное напряжение.

На рис. 10.10 показан простой повышающий преобразова­тель [10.10], к достоинствам которого можно отнести:

• стабилизированное выходное напряжение;

• возможность регулировки величины выходного напряжения в значительных пределах;

• применение широко распространенных элементов;

• использование в качестве Т1 типового трансформатора ТН-46-127/220-50 без каких-либо переделок.

Рис. 10.10. Схема повышающего преобразователя 9…12,6 В/220 В, 18 Вт с регулируемым стабилизированным выходным напряжением переменного тока

Преобразователь выполнен на транзисторах VT4 и VT5 по классической схеме Ройера. Его питание осуществляется от регу­лируемого стабилизатора напряжения на транзисторах VT1 — VT3. Следует иметь в виду, что транзисторы VT3 — VT5 обяз^-тельнб должны быть установлены на теплоотводящих пластинах. Составной стабилитрон VD1 — VD2 <КС147А и КС133А) можно за­менить на КС182. Максимальный ток нагрузки — до 100 мА.

Ссылка на основную публикацию
Adblock
detector
×
×